精英家教网 > 初中数学 > 题目详情
13.函数y=$\frac{x}{x-1}$ 的定义域是x≠1.

分析 根据分母不等于0列不等式求解即可.

解答 解:由题意得,x-1≠0,
解得x≠1.
故答案为:x≠1.

点评 本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数非负.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.启明公司生产某种产品,每件产品成本是3元,售价是4元,年销售量为10万件.为了获得更好的效益,公司准备拿出一定的资金做广告,根据经验,每年投入的广告费是x(万元)时,产品的年销售量是原销售量的y倍,且y=-$\frac{x^2}{10}$+$\frac{7}{10}$x+$\frac{7}{10}$,如果把利润看作是销售总额减去成本费和广告费.
(1)试写出年利润S(万元)与广告费x(万元)的函数关系式,并计算广告费是多少万元时,公司获得的年利润最大,最大年利润是多少万元?
(2)为了保证年利润不低于12万元,则广告费x的取值范围是1≤x≤5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.计算:2sin60°-|cot30°-cot45°|+$\frac{tan45°}{cos30°-1}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如图,在△ABC中,∠ACB=90°,AB=9,cosB=$\frac{2}{3}$,把△ABC绕着点C旋转,使点B与AB边上的点D重合,点A落在点E,则点A、E之间的距离为4$\sqrt{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,已知四边形ABCD是矩形,cot∠ADB=$\frac{3}{4}$,AB=16.点E在射线BC上,点F在线段BD上,且∠DEF=∠ADB.
(1)求线段BD的长;
(2)设BE=x,△DEF的面积为y,求y关于x的函数关系式,并写出函数定义域;
(3)当△DEF为等腰三角形时,求线段BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.点G是△ABC的重心,GD∥AB,交边BC于点D,如果BC=6,那么CD 的长是4.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.如图,有一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=22°,那么∠2的度数是(  )
A.30°B.23°C.20°D.15°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,矩形ABCD中,AB=3,BC=4,点E是射线CB上的动点,点F是射线CD上一点,且AF⊥AE,射线EF与对角线BD交于点G,与射线AD交于点M;
(1)当点E在线段BC上时,求证:△AEF∽△ABD;
(2)在(1)的条件下,联结AG,设BE=x,tan∠MAG=y,求y关于x的函数解析式,并写出x的取值范围;
(3)当△AGM与△ADF相似时,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.计算:|3-5|=2.

查看答案和解析>>

同步练习册答案