精英家教网 > 初中数学 > 题目详情

【题目】如图,正方形ABCD的边长为3,延长CB至点M,使SABM=,过点BBNAM,垂足为N,O是对角线AC,BD的交点,连接ON,则ON的长为________

【答案】

【解析】

先根据三角形的面积公式求出BM的长,由条件可证得ABN∽△BNM∽△ABM,且可求得AM=,利用对应线段的比相等可求得ANMN,进一步可得到=,且∠CAM=NAO,可证得AON∽△AMC,利用相似三角形的性质可求得ON.

∵正方形ABCD的边长为3,SABM=

BM=

AB=3,BM=1,

AM=

∵∠ABM=90°,BNAM,

∴△ABN∽△BNM∽△AMB,

AB2=AN×AM,BM2=MN×AM,

AN=,MN=

AB=3,CD=3,

AC=3

AO=

==

=,且∠CAM=NAO,

∴△AON∽△AMC,

==

ON=

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,正方形OABC和正方形CDEF在平面直角坐标系中,点OCFy轴上,点O为坐标原点,点MOC的中点,抛物线y=ax2+b经过MBE三点,则的值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(本小题满分9分)

根据要求,解答下列问题.

(1)根据要求,解答下列问题.

方程x2-2x+1=0的解为________________________;

方程x23x+2=0的解为________________________;

方程x24x+3=0的解为________________________;

…… ……

(2)根据以上方程特征及其解的特征,请猜想:

方程x29x+8=0的解为________________________;

关于x的方程________________________的解为x1=1,x2=n.

(3)请用配方法解方程x29x+8=0,以验证猜想结论的正确性.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.

(1)求抛物线的解析式;

(2)当点P运动到什么位置时,△PAB的面积有最大值?

(3)过点Px轴的垂线,交线段AB于点D,再过点PPEx轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形中,点分别是的中点,分别是的中点,满足什么条件时,四边形是菱形?请证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学对本校500名毕业生中考体育加试测试情况进行调查,根据男生1 000m及女生800m测试成绩整理、绘制成如下不完整的统计图(图①、图②),请根据统计图提供的信息,回答下列问题:

(1)该校毕业生中男生有________人,女生有________人;

(2)扇形统计图中a=________,b=________;

(3)补全条形统计图(不必写出计算过程).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小明准备测量一段水渠的深度,他把一根竹竿AB竖直插到水底,此时竹竿AB离岸边点C处的距离米。竹竿高出水面的部分AD0.5米,如果把竹竿的顶端A拉向岸边点C处,竿顶和岸边的水面刚好相齐,则水渠的深度BD为(

A. 2B. 2.5C. 2.25D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的方程mx2+(3m+1)x+3=0.

1)求证:不论m取何值,方程都有实数根;

2)若方程有两个整数根,求整数m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,矩形OABC的顶点A(﹣6,0),C(0,2).将矩形OABC绕点O顺时针方向旋转,使点A恰好落在OB上的点A1处,则点B的对应点B1的坐标为_____

查看答案和解析>>

同步练习册答案