精英家教网 > 初中数学 > 题目详情

【题目】某中学对本校500名毕业生中考体育加试测试情况进行调查,根据男生1 000m及女生800m测试成绩整理、绘制成如下不完整的统计图(图①、图②),请根据统计图提供的信息,回答下列问题:

(1)该校毕业生中男生有________人,女生有________人;

(2)扇形统计图中a=________,b=________;

(3)补全条形统计图(不必写出计算过程).

【答案】(1)300;200(2)12;62;(3)见解析.

【解析】

(1)男生人数为20+40+60+180=300,女生人数为500-300=200;

(2)8分对应百分数用8分的总人数÷500,10分对应百分数用1-其它几个百分数;

(3)8分以下总人数=500×10%=50,其中女生=50-20,10分总人数=500×62%=310,其中女生人数=310-180=130.

(1)如图,男生人数为20+40+60+180=300,女生人数为500-300=200,

故答案为:300,200;

(2)8分对应百分数为(40+20)÷500=12%,

10分对应百分数为1-10%-12%-16%=62%,

故答案为:a=12,b=62;

(3)解:由图得

8分以下的人数有:500×10%=50人,

∴女生有:50﹣20=30人.

10分的女生有:62%×500﹣180=130人.

补全图象为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中只选一类最喜爱的电视节目,以下是根据调查结果绘制的不完整统计表,根据表中信息,回答下列问题:

喜爱的电视节目类型

人数

频率

新闻

4

0.08

体育

/

/

动画

15

/

娱乐

18

0.36

戏曲

/

0.06

(1)本次共调查了_______名学生,若将各类电视节目喜爱的人数所占比例绘制成扇形统计图,则“喜爱动画”对应扇形的圆心角度数是_______

(2)该校共有2000名学生,根据调查结果估计该校“喜爱体育”节目的学生人数;

(3)在此次问卷调查中,甲、乙两班分别有人喜爱新闻节目,若从这人中随机抽取人去参加“新闻小记者”培训,求抽取的人来自不同班级的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(建立概念)如下图,AB为数轴上不重合的两定点,点P也在该数轴上,我们比较线段的长度,将较短线段的长度定义为点P到线段靠近距离”.特别地,若线段的长度相等,则将线段的长度定义为点P到线段靠近距离”.

(概念理解)如下图,数轴的原点为O,点A表示的数为,点B表示的数为4.

1)点O到线段靠近距离________

2)点P表示的数为m,若点P到线段靠近距离3,则m的值为_________

(拓展应用)(3)如下图,在数轴上,点P表示的数为,点A表示的数为,点B表示的数为6. P以每秒2个单位长度的速度向正半轴方向移动时,点B同时以每秒1个单位长度的速度向负半轴方向移动.设移动的时间为秒,当点P到线段靠近距离3时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校组织360名师生外出活动,计划租用甲、乙两种型号的客车;经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.

(1)已知师生行李打包后共有164件,若租用10辆甲、乙两种型号的客车,请你帮助设计出该校所有可行的租车方案;

(2)若师生行李打包后共有m件,且170 < m ≤ 184,如果所租车辆刚好把所有师生和行李载走(每辆车均以最多承载量载满),求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】梯形ABCDAB∥CD∠ADC∠BCD90°,以ADABBC为斜边向形外作等腰直角三角形,其面积分别是,且,则CD=(

A.2.5ABB.3ABC.3.5ABD.4AB

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】的度数是的度数的k倍,则规定k倍角.

1)若∠M=21°17',则∠M5倍角的度数为

2)如图1,OB是∠AOC的平分线,OD是∠COE的平分线,若∠AOC=COE,请直接写出图中∠AOB的所有3倍角;

3)如图2,若∠AOC是∠AOB5倍角,∠COD是∠AOB3倍角,且∠AOC和∠BOD互为补角,求∠AOD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面内,将一副直角三角板按如图所示的方式摆放,其中三角形ABC为含60°角的直角三角板,三角形BDE为含45°角的直角三角板.

1)如图1,若点DAB上,则∠EBC的度数为  

2)如图2,若∠EBC170°,则∠α的度数为  

3)如图3,若∠EBC118°,求∠α的度数;

4)如图3,若<∠α60°,求∠ABE-∠DBC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y = x2 + bx + c的图象经过点Al 0) ,B﹣3 0,与y轴交于点C ,抛物线的顶点为D ,对称轴与x轴相交于点E ,连接BD

(1)求抛物线的解析式

(2)若点P在直线BD上,当PE = PC时,求点P的坐标

(3)在(2)的条件下,作PF⊥x轴于F ,点Mx轴上一动点N为直线PF上一动点G为抛物线上一动点,当以点F N G M 四点为顶点的四边形为正方形时,求点M的坐标

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,AD的中点,

且∠ABM=∠BAM,连接BM,MN,BN.

(1)求证:BM=MN;

(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.

查看答案和解析>>

同步练习册答案