精英家教网 > 初中数学 > 题目详情

【题目】如图,已知函数y= (x>0)的图象经过点A、B,点B的坐标为(2,2).过点A作AC⊥x轴,垂足为C,过点B作BD⊥y轴,垂足为D,AC与BD交于点F.一次函数y=ax+b的图象经过点A、D,与x轴的负半轴交于点E
(1)若AC= OD,求a、b的值;
(2)若BC∥AE,求BC的长.

【答案】
(1)解;∵点B(2,2)在函数y= (x>0)的图象上,

∴k=4,则y=

∵BD⊥y轴,∴D点的坐标为:(0,2),OD=2,

∵AC⊥x轴,AC= OD,∴AC=3,即A点的纵坐标为:3,

∵点A在y= 的图象上,∴A点的坐标为:( ,3),

∵一次函数y=ax+b的图象经过点A、D,

解得:


(2)解;设A点的坐标为:(m, ),则C点的坐标为:(m,0),

∵BD∥CE,且BC∥DE,

∴四边形BCED为平行四边形,

∴CE=BD=2,

∵BD∥CE,∴∠ADF=∠AEC,

∴在Rt△AFD中,tan∠ADF= =

在Rt△ACE中,tan∠AEC= =

=

解得:m=1,

∴C点的坐标为:(1,0),则BC=


【解析】(1)首先利用反比例函数图象上点的坐标性质得出k的值,再得出A、D点坐标,进而求出a,b的值;(2)设A点的坐标为:(m, ),则C点的坐标为:(m,0),得出tan∠ADF= = ,tan∠AEC= = ,进而求出m的值,即可得出答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】晚上,小亮走在大街上.他发现:当他站在大街两边的两盏路灯之间,并且自己被两边路灯照在地上的两个影子成一直线时,自己右边的影子长为3米,左边的影子长为1.5米.又知自己身高1.80米,两盏路灯的高相同,两盏路灯之间的距离为12米,则路灯的高为米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】主题班会课上,王老师出示了如图所示的一幅漫画,经过同学们的一番热议,达成以下四个观点:
A.放下自我,彼此尊重; B.放下利益,彼此平衡;
C.放下性格,彼此成就; D.合理竞争,合作双赢.
要求每人选取其中一个观点写出自己的感悟,根据同学们的选择情况,小明绘制了下面两幅不完整的图表,请根据图表中提供的信息,解答下列问题:

观点

频数

频率

A

a

0.2

B

12

0.24

C

8

b

D

20

0.4


(1)参加本次讨论的学生共有人;
(2)表中a= , b=
(3)将条形统计图补充完整;
(4)现准备从A,B,C,D四个观点中任选两个作为演讲主题,请用列表或画树状图的方法求选中观点D(合理竞争,合作双赢)的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC是等腰直角三角形,∠A=90°,D是腰AC上的一个动点,过C作CE垂直于BD的延长线,垂足为E,如图1

(1)求证:ADCD=BDDE;
(2)若BD是边AC的中线,如图2,求 的值;

(3)如图3,连接AE.若AE=EC,求 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图ABC ,AB=AC, E CA 的延长线上E=AFE,请判 EF BC 的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线y=﹣ x2+bx+c与x轴交于点A,B,与y轴交于点C,直线y=x+4经过A,C两点.
(1)求抛物线的解析式;
(2)在AC上方的抛物线上有一动点P.
①如图1,当点P运动到某位置时,以AP,AO为邻边的平行四边形第四个顶点恰好也在抛物线上,求出此时点P的坐标;

②如图2,过点O,P的直线y=kx交AC于点E,若PE:OE=3:8,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠ACB=90°,点E在BC上,以CE为直径的⊙O交AB于点F,AO∥EF
(1)求证:AB是⊙O的切线;
(2)如图2,连结CF交AO于点G,交AE于点P,若BE=2,BF=4,求 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.
(1)求证:CD2=CACB;
(2)求证:CD是⊙O的切线;
(3)过点B作⊙O的切线交CD的延长线于点E,若BC=12,tan∠CDA= ,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).

(1)若△ABC经过平移后得到△A1B1C1 , 已知点C1的坐标为(4,0),写出顶点A1 , B1的坐标;
(2)若△ABC和△A1B2C2关于原点O成中心对称图形,写出△A1B2C2的各顶点的坐标;
(3)将△ABC绕着点O按顺时针方向旋转90°得到△A2B3C3 , 写出△A2B3C3的各顶点的坐标.

查看答案和解析>>

同步练习册答案