【题目】如图,长方形ABCD中,AB=9,AD=4.E为CD边上一点,CE=6. 点P从点B出发,以每秒1个单位的速度沿着边BA向终点A运动,连接PE.设点P运动的时间为t秒.
(1)当t为何值时,△PAE为直角三角形?
(2)是否存在这样的t,使EA恰好平分∠PED,若存在,求出t的值;若不存在,请说明理由.
【答案】(1)t=6,t=;(2)PA=PE,t=
【解析】
(1)需要分类讨论:AE为斜边和AP为斜边两种情况下的直角三角形;
(2)假设存在.利用角平分线的性质,平行线的性质以及等量代换推知:∠PEA=∠EAP,则PE=PA,由此列出关于t的方程,通过解方程求得相应的t的值即可.
(1)∵矩形ABCD中,AB=9,AD=4,
∴CD=AB=9,∠D=90°,
∴DE=9-6=3,
∴AE===5;
若∠EPA=90°,t=6;
②若∠PEA=90°,(6-t)2+42+52=(9-t)2,
解得t=.
综上所述,当t=6或t=时,△PAE为直角三角形;
(2)假设存在,
∵EA平分∠PED,
∴∠PEA=∠DEA,
∵CD∥AB,
∴∠DEA=∠EAP,
∴∠PEA=∠EAP,
∴PE=PA,
∴(6-t)2+42=(9-t)2,
解得t=.
∴满足条件的t存在,此时t=.
科目:初中数学 来源: 题型:
【题目】某商场第一次用11000元购进某款拼装机器人进行销售,很快销售一空,商家又用24000元第二次购进同款机器人,所购进数量是第一次的2倍,但单价贵了10元.
(1)求该商家第一次购进机器人多少个?
(2)若所有机器人都按相同的标价销售,要求全部销售完毕的利润率不低于20%(不考虑其它因素),那么每个机器人的标价至少是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】初二()班的全体同学在体测当天沿着同一条路匀速从名校联中班级教室出发到重庆一中本部操场参加体育测试,行进到本部综合楼时班主任老师发现未带相关体测器材,立即派小赵同学原路匀速跑回本班教室取器材(取器材时间为分钟),然后马上又以原速的去追赶班级队伍.当途中再次经过综合楼时,小赵发现班级队伍在自己前面不远处,于是他又以之前的速度追赶班级队伍,结果仍然比班级队伍晚分钟到达本部操场.如图所示,设小赵与本部操场之间距离为(),小赵所用时间为(),则当小赵途中再次经过综合楼时,班级队伍(队伍长度忽略不计)离本部操场的距离是______米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若正整数k满足个位数字为1,其他数位上的数字均不为1且十位与百位上的数字相等,
我们称这样的数k为“言唯一数”,交换其首位与个位的数字得到一个新数k',并记F(k)=.
(1)最大的四位“言唯一数”是 ,最小的三位“言唯一数”是 ;
(2)证明:对于任意的四位“言唯一数”m,m+m'能被11整除;
(3)设四位“言唯一数”n=1000x+100y+10y+1(2≤x≤9,0≤y≤9且y≠1,x、y均为整数),若F(n)仍然为“言唯一数”,求所有满足条件的四位“言唯一数”n.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某汽车厂去年每个季度汽车销售数量(辆)占当季汽车产量(辆)百分比的统计图如图所示.根据统计图回答下列问题:
(1)若第一季度的汽车销售量为2100辆,求该季的汽车产量;
(2)圆圆同学说:“因为第二,第三这两个季度汽车销售数量占当季汽车产量是从75%降到50%,所以第二季度的汽车产量一定高于第三季度的汽车产量”,你觉得圆圆说的对吗?为什么?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com