精英家教网 > 初中数学 > 题目详情

【题目】如图1P点从点A开始以2厘米/秒的速度沿ABC的方向移动,点Q从点C开始以1厘米/秒的速度沿CAB的方向移动,在直角三角形ABC中,∠A90°,若AB16厘米,AC12厘米,BC20厘米,如果PQ同时出发,用t(秒)表示移动时间,那么:

1)如图1,若P在线段AB上运动,Q在线段CA上运动,试求出t为何值时,QAAP

2)如图2,点QCA上运动,试求出t为何值时,三角形QAB的面积等于三角形ABC面积的

3)如图3,当P点到达C点时,PQ两点都停止运动,试求当t为何值时,线段AQ的长度等于线段BP的长的

【答案】(1) 4s;(2) 9s;(3) t=s或16s

【解析】

试题(1)当P在线段AB上运动,Q在线段CA上运动时,设CQ=t,AP=2t,则AQ=12-t,由AQ=AP,可得方程12-t=2t,解方程即可.

(2)当Q在线段CA上时,设CQ=t,则AQ=12-t,根据三角形QAB的面积等于三角形ABC面积的,列出方程即可解决问题.

(3)分三种情形讨论即可①当0<t≤8时,P在线段AB上运动,Q在线段CA上运动.②当8<t≤12时,Q在线段CA上运动,P在线段BC上运动.③当t>12时,Q在线段AB上运动,P在线段BC上运动时,分别列出方程求解即可.

试题解析:(1)当P在线段AB上运动,Q在线段CA上运动时,设CQ=t,AP=2t,则AQ=12-t,

AQ=AP,

12-t=2t,

t=4.

t=4s时,AQ=AP.

(2)当Q在线段CA上时,设CQ=t,则AQ=12-t,

∵三角形QAB的面积等于三角形ABC面积的

ABAQ=×ABAC,

×16×(12-t)=×16×12,解得t=9.

t=9s时,三角形QAB的面积等于三角形ABC面积的

(3)由题意可知,Q在线段CA上运动的时间为12秒,P在线段AB上运动时间为8秒,

①当0<t≤8时,P在线段AB上运动,Q在线段CA上运动,设CQ=t,AP=2t,则AQ=12-t,BP=16-2t,

AQ=BP,

12-t=(16-2t),解得t=16(不合题意舍弃).

②当8<t≤12时,Q在线段CA上运动,P在线段BC上运动,设CQ=t,则AQ=12-t,BP=2t-16,

AQ=BP,

12-t=(2t-16),解得t=

③当t>12时,Q在线段AB上运动,P在线段BC上运动时,

AQ=t-12,BP=2t-16,

AQ=BP,

t-12=(2t-16),解得/span>t=16,

综上所述,t=s16s时,AQ=BP.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,E,F是对角线AC上的两点且AE=CF,在①BE=DF;②BE∥DF;③AB=DE;④四边形EBFD为平行四边形;⑤SADE=SABE;⑥AF=CE这些结论中正确的是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,二次函数y=x2+bx+c的对称轴为经过点(1,0)的直线,其图象与x轴交于点A、B,且过点C(0,﹣3),其顶点为D.

(1)求这个二次函数的解析式及顶点坐标;
(2)在y轴上找一点P(点P与点C不重合),使得∠APD=90°,求点P的坐标;
(3)在(2)的条件下,将△APD沿直线AD翻折得到△AQD,求点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】回答下列问题:

1)如图所示的甲、乙两个平面图形能折什么几何体?

2)由多个平面围成的几何体叫做多面体.若一个多面体的面数为f,顶点个数为v,棱数为e,分别计算第(1)题中两个多面体的f+v﹣e的值?你发现什么规律?

3)应用上述规律解决问题:一个多面体的顶点数比面数大8,且有50条棱,求这个几何体的面数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)当一次性购物标价总额是300元时,甲、乙超市实付款分别是多少?

(2)当标价总额是多少时,甲、乙超市实付款一样?

(3)小王两次到乙超市分别购物付款198元和466元,若他只去一次该超市购买同样多的商品,可以节省多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,AB=15,BC=14,AC=13,求ABC的面积.

某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.

思路:(1) ADBCD,设BD = x,用含x的代数式表示CD;(2)根据勾股定理,利用AD作为桥梁,建立方程模型求出x;(3)利用勾股定理求出AD的长,再计算三角形面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰直角三角形ABC中,∠ACB=90AC=BC=4DAB的中点,EF分别是AC BC上的点(点E不与端点AC重合),且AE=CF,连接EF并取EF的中点O,连接DO并延长至点G,使GO=OD.连接DE GE GF.

(1)求证:四边形EDFG是正方形;

(2)直接写出四边形EDFG面积的最小值和E点所在的位置.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了解本校九年级男生“引体向上”项目的训练情况,随机抽取该年级部分男生进行了一次测试(满分15分,成绩均记为整数分),并按测试成绩(单位:分)分成四类:A类(12≤m≤15),B类(9≤m≤11),C类(6≤m≤8),D类(m≤5)绘制出以下两幅不完整的统计图,请根据图中信息解答下列问题:
(1)本次抽取样本容量为 , 扇形统计图中A类所对的圆心角是度;
(2)请补全条形统计图;
(3)若该校九年级男生有600名,请估计该校九年级男生“引体向上”项目成绩为C类的有多少名?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算题
(1)20170﹣|﹣sin45°|cos45°+ ﹣(﹣ 1
(2)

查看答案和解析>>

同步练习册答案