【题目】在等腰三角形ABCD中,AB=AC,分别在射线AB、CA上取点D、E,连结DE,过点E作EF∥AB交直线BC于点F,直线BC与DE所在直线交于点M.
猜想:如图①,点D在边AB延长线上,点E在边AC上,且BD=CE,则线段BM、EM的大小关系为 .
探究:如图②,点D、E分别在边AB、CA延长线上,且BD=CE,判断线段DM、EM的大小关系,并加以证明.
拓展:如图③,点D在边AB上(点D不与点A、B重合),点E在边CA的延长线上,其它条件不变,若BD=1,CE=4,DM=0.7,则线段DE的长为 .
【答案】猜想:DM=EM;探究:DM=EM;拓展:2.1.
【解析】
试题分析:(1)根据等腰三角形的性质和平行线的性质得到∠D=∠MEF,证明△BDM≌△FEM即可;
(2)根据等腰三角形的性质和平行线的性质得到∠D=∠MEF,证明△BDM≌△FEM即可;
(3)根据等腰三角形的性质和平行线的性质得到EF=CE由BD∥EF得,代入数据即可得到结论.
试题解析:(1)猜想:DM=EM.
理由:∵AB=AC,
∴∠ABC=∠C,
∵EF∥AD,
∴∠EFC=∠ABC,
∴∠C=∠EFC,
∴EF=EC,
∵BD=EC,
∴DB=EF,
∵EF∥AB,
∴∠D=∠MEF,
在△BDM和△FEM中,
,
∴△BDM≌△FEM,
∴DM=EM.
(2)结论DM=EM.
理由:∵AB=AC,
∴∠ABC=∠C,
∵EF∥AB,
∴∠EFC=∠ABC,
∴∠C=∠EFC,
∴EF=EC,
∵BD=EC,
∴DB=EF,
∵EF∥AB,
∴∠D=∠MEF,
在△BDM和△FEM中,
,
∴△BDM≌△FEM,
∴DM=EM.
(3)∵EF∥AB,
∴∠F=∠ABC,
∵AB=AC,
∴∠ABC=∠C,
∴∠F=∠C,
∴EF=CE=4,
∵BD∥EF,
∴,
∴,
∴EM=2.8,
∴DE=EM-DM=2.1,
科目:初中数学 来源: 题型:
【题目】感知:如图①,在矩形ABCD中,点E是边BC的中点,将△ABE沿AE折叠,使点B落在矩形ABCD内部的点F处,延长AF交CD于点G,连结FC,易证∠GCF=∠GFC.
探究:将图①中的矩形ABCD改为平行四边形,其他条件不变,如图②,判断∠GCF=∠GFC是否仍然相等,并说明理由.
应用:如图②,若AB=5,BC=6,则△ADG的周长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小毅和小明同时从学校出发到科技馆参加活动,小毅每小时走6千米,小明每小时走8千米,走了1小时后,小明忘带材料返回学校取材料,立即按原路去追小毅.小明几小时追上小毅?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法正确的是( )
A. 两个数的和为零,则它们互为相反数 B. 负数的倒数一定比原数大
C. π的相反数是-3.14 D. 原数一定比它的相反数小
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=﹣(x+2)2﹣3向右平移了3个单位,那么平移后抛物线的顶点坐标是( )
A. (﹣5,﹣3) B. (﹣2,0) C. (﹣1,﹣3) D. (1,﹣3)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com