【题目】某品牌服装公司经过市场调査,得到某种运动服的月销量 y(件)是售价 x(元/件)的一次函数,其售价、月销售量、月销售利润 w(元)的三组对应值如下表:
注:月销售利润=月销售量×(售价一进价)
(1)求 y 关于 x 的函数解析式(不要求写出自变量的取值范围);
(2)当售价是多少时,月销售利润最大?最大利润是多少元?
(3)为响应号召,该公司决定每售出 1 件服装,就捐赠 a 元(a 0),商家规定该服装售价不得超过200 元,月销售量仍满足上关系,若此时月销售最大利润仍可达 9600 元,求 a 的值.
【答案】(1)y=-3x+600;(2)当售价是140元时,月销售利润最大,最大利润是10800元;(3)a 的值为
【解析】
(1)设y=kx+b,将(130,210)和(150,150)代入即可求出结论;
(2)设这种运动服的进价为m元/件,根据题意可得w=y(x-m),将x=130,y=210,w=10500代入即可求出m的值,从而求出w与x的二次函数关系式,最后利用二次函数求最值即可;
(3)由题意可知:w=(-3x+600)(x-80-a)=-3(x-)2+(x≤200),然后根据对称轴与x的取值范围分类讨论,分别根据二次函数的增减性用x求出对应的最值,即可得出结论.
解:(1)由题意可设y=kx+b
将(130,210)和(150,150)代入,得
解得:
∴y 关于 x 的函数解析式为y=-3x+600
(2)设这种运动服的进价为m元/件
由题意可知:w=y(x-m)
将x=130,y=210,w=10500代入,得
10500=210(130-m)
解得:m=80
∴w=y(x-80)=(-3x+600)(x-80)=-3x2+840x-48000=-3(x-140)2+10800
而-3<0
∴当x=140时,w有最大值,最大值为10800
答:当售价是140元时,月销售利润最大,最大利润是10800元.
(3)由题意可知:w=(-3x+600)(x-80-a)=-3(x-)2+(x≤200)
当≥200时,由-3<0
∴当x≤200时,w随x的增大而增大
∴当x=200时,w最大,此时w=0,故不符合题意;
∴≤200,即a≤120,由-3<0
当x=,w有最大值,此时w的最大值为
即
解得:(不符合前提条件,故舍去)
∴
答:a 的值为.
科目:初中数学 来源: 题型:
【题目】如图,直线y=kx+b与反比例函数的图象分别交于点A(﹣1,2),点B(﹣4,n),与x轴,y轴分别交于点C,D.
(1)求此一次函数和反比例函数的解析式;
(2)求△AOB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】高中招生指标到校是我市中考招生制度改革的一项重要措施.某初级中学对该校近四年指标到校保送生人数进行了统计,制成了如下两幅不完整的统计图:
(1)该校近四年保送生人数的极差是 .请将折线统计图补充完整;
(2)该校2009年指标到校保送生中只有1位女同学,学校打算从中随机选出2位同学了解他们进人高中阶段的学习情况.请用列表法或画树状图的方法,求出所选两位同学恰好是1位男同学和1位女同学的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一枚运载火箭从距雷达站C处5km的地面O处发射,当火箭到达点A,B时,在雷达站C处测得点A,B的仰角分别为34°,45°,其中点O,A,B在同一条直线上.求A,B两点间的距离(结果精确到0.1km).
(参考数据:sin34°=0.56,cos34°=0.83,tan34°=0.67.)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】方程 7x (k 13)x k 2 0 ( k 是实数)有两个实数跟 a,b ,且 0 a 1 b 2 ,那么 k 的取值范围是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某大楼的顶部竖有一块广告牌CD,小明与同学们在山坡的坡脚A处测得广告牌底部D的仰角为53°,沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度,AB=10米,AE=21米,求广告牌CD的高度.(测角器的高度忽略不计,参考数据:tan53°≈,cos53°≈0.60)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个不透明的袋子中装有除颜色外其余均相同的4个小球,其中红球3个(记为,,),黑球1个(记为).
(1)若先从袋中取出个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件,填空:①若为必然事件,则的值为__________;②若为随机事件,则的取值为_____________;
(2)若从袋中随机摸出2个球,正好红球、黑球各1个,用树状图或列表法求这个事件的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且-2≤x≤1时,y的最大值为9,则a的值为
A. 1或 B. -或 C. D. 1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市一项民生改造工程,由甲、乙两工程队合作20天可完成,若单独完成此项工程,甲工程队所用天数是乙工程队的2倍.
(1)甲、乙两工程队单独完成此项工程各需要多少天?
(2)甲工程队单独做a天后,再由甲、乙两工程队合作 天(用含a的代数式表示)可完成此项工程.已知甲工程队施工费每天1万元,乙工程队每天施工费2.5万元,求甲工程队要单独施工多少天后,再由甲、乙两工程队合作完成剩下的工程,才能使工程费不超过64万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com