【题目】如图,直线y=kx+b与反比例函数的图象分别交于点A(﹣1,2),点B(﹣4,n),与x轴,y轴分别交于点C,D.
(1)求此一次函数和反比例函数的解析式;
(2)求△AOB的面积.
【答案】(1)y=x+;(2)
【解析】
(1)先根据点A求出k值,再根据反比例函数解析式求出n值,利用待定系数法求一次函数的解析式;
(2)利用三角形的面积差求解.S△AOB=S△AOC﹣S△BOC=5.
解:(1)将点A(﹣1,2)代入中,2=;
∴m=﹣2.
∴反比例函数解析式为y=﹣.
将B(﹣4,n)代入y=﹣中,n=﹣;
∴n=.
∴B点坐标为(﹣4,).
将A(﹣1,2)、B(﹣4,)的坐标分别代入y=kx+b中,
得,解得.
∴一次函数的解析式为y=x+;
(2)当y=0时,x+=0,x=﹣5;
∴C点坐标(﹣5,0),∴OC=5.
S△AOC=OC|yA|=×5×2=5.
S△BOC=OC|yB|=×5×.
S△AOB=S△AOC﹣S△BOC=5.
科目:初中数学 来源: 题型:
【题目】在矩形中,,以为直径的半圆在矩形的外部,如图1,将半圆绕点顺时针旋转α度(0°≤ɑ≤180°).
(1)在旋转过程中,的最小值是_____________,当半圆的直径落在对角线上时,如图2,设半圆与的交点为,则长为__________.
(2)将半圆与直线相切时,切点为,半圆与线段的交点为,如图3,求劣弧的长;
(3)在旋转过程中,当半圆弧与直线只有一个交点时,设此交点与点的距离为请直接写出的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图已知在直角坐标系中,一条抛物线与x轴交于A、B两点,与y轴交于C点,其中B(3,0),C(0,4),点A在x轴的负半轴上,OC=4OA.
(1)求点A坐标;
(2)求这条抛物线的解析式,并求出它的顶点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,已知抛物线经过点三点,点与点关于轴对称,点是线段上的一个动点,设点的坐标为过点作轴的垂线交抛物线于点,交直线于点.
(1)求该抛物线所表示的二次函数的表达式;
(2)在点运动过程中,是否存在点,使得是直角三角形?若存在,求出点的坐标;若不存在,请说明理由;
(3)连接,将绕平面内某点顺时针旋转,得到,点的对应点分别是点.若的两个顶点恰好落在抛物线上,那么我们就称这样的点为"和谐点",请直接写出"和谐点"的个数和点的横坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=a+bx+c的对称轴是直线x=1,且过点(1,0).顶点位于第二象限,其部分图象如图所示,给出以下判断:①ab;② 4a-2b+c;③8a+c;④c=3a-3b;
⑤直线y=2x+2与抛物线y=a+bx+c两个交点的横坐标分别为,则=5.
其中正确的个数有( )
A.5个B.4个C.3个D.2个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于反比例函数,下列说法错误的是( )
A. 函数图象位于第一、三象限
B. 函数值y随x的增大而减小
C. 若A(-1,y1)、B(1,y2)、C(2,y3)是图象上三个点,则y1<y3<y2
D. P为图象上任意一点,过P作PQ⊥y轴于Q,则△OPQ的面积是定值
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某品牌服装公司经过市场调査,得到某种运动服的月销量 y(件)是售价 x(元/件)的一次函数,其售价、月销售量、月销售利润 w(元)的三组对应值如下表:
注:月销售利润=月销售量×(售价一进价)
(1)求 y 关于 x 的函数解析式(不要求写出自变量的取值范围);
(2)当售价是多少时,月销售利润最大?最大利润是多少元?
(3)为响应号召,该公司决定每售出 1 件服装,就捐赠 a 元(a 0),商家规定该服装售价不得超过200 元,月销售量仍满足上关系,若此时月销售最大利润仍可达 9600 元,求 a 的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com