【题目】下列说法错误的是( )
A.没有最大的正数,却有最大的负整数
B.数轴上离原点越远,表示数越大
C.0大于一切非负数
D.在原点左边离原点越远,数就越小
科目:初中数学 来源: 题型:
【题目】 (2016柳州)如图1,抛物线的顶点坐标为(0,﹣1),且经过点A(﹣2,0).
(1)求抛物线的解析式;
(2)若将抛物线中在x轴下方的图象沿x轴翻折到x轴上方,x轴上方的图象保持不变,就得到了函数图象上的任意一点,直线l是经过(0,1)且平行与x轴的直线,过点P作直线l的垂线,垂足为D,猜想并探究:PO与PD的差是否为定值?如果是,请求出此定值;如果不是,请说明理由.
(注:在解题过程中,如果你觉得有困难,可以阅读下面的材料)
附阅读材料:
1.在平面直角坐标系中,若A、B两点的坐标分别为A(,),B(,),则A,B两点间的距离为|AB|=,这个公式叫两点间距离公式.
例如:已知A,B两点的坐标分别为(﹣1,2),(2,﹣2),则A,B两点间的距离为|AB|==5.
2.因式分解:.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知某二次函数,当x<1时,y随x的增大而减小;当x>1时,y随x的增大而增大,则该二次函数的解析式可以是( )
A.y=3(x+1)2B.y=3(x﹣1)2C.y=﹣3(x+1)2D.y=﹣3(x﹣1)2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线交x轴于A,B两点,交y轴于点C(0,3),tan∠OAC=.
(1)求抛物线的解析式;
(2)点H是线段AC上任意一点,过H作直线HN⊥x轴于点N,交抛物线于点P,求线段PH的最大值;
(3)点M是抛物线上任意一点,连接CM,以CM为边作正方形CMEF,是否存在点M使点E恰好落在对称轴上?若存在,请求出点M的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,其图象反映的过程是:张强从家去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家,其中x表示时间,y表示张强离家的距离.根据图象,下列回答正确的是( )
A.张强在体育场锻炼45分钟
B.张强家距离体育场是4千米
C.张强从离家到回到家一共用了200分钟
D.张强从家到体育场的平均速度是10千米/小时
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com