精英家教网 > 初中数学 > 题目详情

【题目】如图,在矩形纸片ABCD中,AB=6,BC=10,点ECD上,将BCE沿BE折叠,点C恰落在边AD上的点F处;点GAF上,将ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:

①∠EBG=45°;DEF∽△ABG;SABG=SFGHAG+DF=FG.

其中正确的是__.(把所有正确结论的序号都选上)

【答案】①③④

【解析】试题解析:∵△BCE沿BE折叠,点C恰落在边AD上的点F处,

∴∠1=2,CE=FE,BF=BC=10,

RtABF中,∵AB=6,BF=10,

AF==8,

DF=AD-AF=10-8=2,

EF=x,则CE=x,DE=CD-CE=6-x,

RtDEF中,∵DE2+DF2=EF2

(6-x)2+22=x2,解得x=

ED=

∵△ABG沿BG折叠,点A恰落在线段BF上的点H处,

∴∠3=4,BH=BA=6,AG=HG,

∴∠2+3=ABC=45°,所以①正确;

HF=BF-BH=10-6=4,

AG=y,则GH=y,GF=8-y,

RtHGF中,∵GH2+HF2=GF2

y2+42=(8-y)2,解得y=3,

AG=GH=3,GF=5,

∵∠A=D,

∴△ABGDEF不相似,所以②错误;

SABG=63=9,SFGH=GHHF=×3×4=6,

SABG=SFGH,所以③正确;

AG+DF=3+2=5,而GF=5,

AG+DF=GF,所以④正确.

∴①③④正确.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线l1,l2是紧靠某湖泊的两条相互垂直的公路,曲线段CD是该湖泊环湖观光大道的一部分.现准备修建一条直线型公路AB,用以连接两条公路和环湖观光大道,且直线AB与曲线段CD有且仅有一个公共点P.已知点Cl1,l2的距离分别为8km1km,点Pl1的距离为4km,点Dl1的距离为0.8km.若分别以l1,l2x轴、y轴建立平面直角坐标系xOy,则曲线段CD对应的函数解析式为y=

(1)求k的值,并指出函数y=的自变量的取值范围;

(2)求直线AB的解析式,并求出公路AB长度(结果保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了测量被池塘隔开的A,B两点之间的距离根据实际情况作出如图所示的图形其中ABBE,EFBE,AFBE于点D,CBD有四位同学分别测量出以下4组数据:①BC,ACB;CD,ACB,ADB;EF,DE,BD;DE,DC,BC.能根据所测数据求出A,B两点之间距离的有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P、Q分别从点A、B同时开始移动,点P的速度为1 cm/秒,点Q的速度为2 cm/秒,点Q移动到点C后停止,点P也随之停止运动下列时间瞬间中,能使△PBQ的面积为15cm 的是(

A. 2秒钟 B. 3秒钟 C. 4秒钟 D. 5秒钟

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.

(1)求购进A、B两种纪念品每件各需多少元?

(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?

(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】【题目】如图,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数y= (k≠0)的图象交于第二、四象限内的A、B两点,与y轴交于C点,过点A作AH⊥y轴,垂足为H,OH=3,tan∠AOH=,点B的坐标为(m,-2).

(1)求△AHO的周长;

(2)求该反比例函数和一次函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“九宫图”传说是远古时代洛河中的一个神龟背上的图案,故又称“龟背图”,中国古代数学史上经常研究这一神话。

⑴现有1,2,3,4,5,6,7,8,9共九个数字,请将它们分别填入图1的九个方格中,使得每行的三个数、每列的三个数、斜对角的三个数之和都等于15.

⑵通过研究问题⑴,利用你发现的规律,将3,5,-7,1,7,-3,9,-5,-1

这九个数字分别填入图2的九个方格中,使得横、竖、斜对角的所有三个数的和都相等.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:在ABCDEF中,∠A=40°,∠E+F=100°,将DEF如图摆放,使得∠D的两条边分别经过点B和点C

1)当将DEF如图1摆放时,则∠ABD+ACD= 度;

2)当将DEF如图2摆放时,请求出∠ABD+ACD的度数,并说明理由.

3)能否将DE摆放到某个位置时,使得BDCD同时平分∠ABC和∠ACB?直接写出结论 (填不能

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD中,ADAB

1)分别作∠ABC和∠BCD的平分线,交ADEF

2)线段AFDE相等吗?请证明.

查看答案和解析>>

同步练习册答案