【题目】已知点C为线段AB上一点,分别以AC、BC为边在线段AB同侧作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE=α,直线AE与BD交于点F.
(1)如图1所示,
①求证AE= BD
②求∠AFB (用含α的代数式表示)
(2)将图1中的△ACD绕点C顺时针旋转某个角度(交点F至少在BD、AE中的一条线段上),得到如图2所示的图形,若∠AFB= 150°,请直接写出此时对应的α的大小(不用证明)
【答案】(1)①见解析,②180° -α(2)30°
【解析】
(1)①由∠ACD=∠BCE=α,得到∠ACE=∠DCB=180°,然后得到△ACE≌DCB,即可得到AE=BD;
②由①知△ACE≌DCB,则∠CAF=∠CDF,利用三角形内角和定理,由∠CAF+∠AFB+∠B=180°,∠CDF+∠DCB+∠B=180°,则∠AFB=∠DCB=;
(2)由∠AFB= 150°,则∠EFB=,由∠ACD=∠BCE,得∠ACE=∠DCB,然后得到△ACE≌△DCB,得到∠AEC=∠DBC,则∠BCE=∠EFB=30°.
解:(1)如图1:
①证明:∵∠ACD=∠BCE=α,
∴180°∠ACD=180°∠BCE,
即∠ACE=∠DCB=180°,
∵CA=CD,CB=CE,
∴△ACE≌DCB,
∴AE=DB;
②∵△ACE≌DCB,
∴∠CAF=∠CDF,
由三角形内角和定理,得
∠CAF+∠AFB+∠B=180°,∠CDF+∠DCB+∠B=180°,
∴∠AFB=∠DCB=;
(2)如图2:
∵∠AFB= 150°,
∴∠EFB=,
∵∠ACD=∠BCE,
∴∠ACD+∠DCO=∠BCE+∠DCO,
∴∠ACE=∠DCB,
∵AC=DC,CE=CB,
∴△ACE≌△DCB,
∴∠AEC=∠DBC,
∵∠FOE=∠COB,
∴∠BCE=∠EFB=30°,
∴.
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=-x2+bx+c与x轴交于点A(-1.0)和点B(3,0) ,与y轴交于点C,连接BC交抛物线的对称轴于点E,D是抛物线的顶点.
(1)求此抛物线的解析式
(2)直接写出点C和点D的坐标
(3)若点P在第一象限内的抛物线上,且S△ABP=4S△CDE,求P点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,点是线段上的动点(点与不重合),分别以为边向线段的同一侧作正和正.
(1)请你判断与有怎样的数量关系?请说明理由;
(2)连接,相交于点,设,那么的大小是否会随点的移动而变化?请说明理由;
(3)如图2,若点固定,将绕点按顺时针方向旋转(旋转角小于),此时的大小是否发生变化?(只需直接写出你的猜想,不必证明)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,长方形纸片中,,将纸片折叠,使顶点落在边上的点处,折痕的一端点在边上.
(1)如图1,当折痕的另一端在边上且时,求的长
(2)如图2,当折痕的另一端在边上且时,
①求证:.②求的长.
(3)如图3,当折痕的另一端在边上,点的对应点在长方形内部,到的距离为2,且时,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线的对称轴为,与轴的一个交点在和之间,其部分图象如图所示,则下列结论:
;;点、、是该抛物线上的点,则;;(为任意实数).
其中正确结论的个数是( )
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A、B以及直线l,AE⊥l,垂足为点E.
(1)过点B作BF⊥l,垂足为点F;
(2)在直线l上求作一点C,使CA=CB;
(要求:第(1)、(2)小题用尺规作图,并在图中标明相应字母,保留作图痕迹,不写作法.)
(3)在所作的图中,连接CA、CB,若∠ACB=90°,求证:△AEC≌△CFB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,AC=BC,AD平分∠BAC交BC于点D,DE⊥AB于点E,若△BDE的周长是5 cm,则AB的长为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,正六边形ABCDEF在直角坐标系的位置如图所示,A(﹣2,0),点B在原点,把正六边形ABCDEF沿x轴正半轴作无滑动的连续翻转,每次翻转60°,经过5次翻转之后,点B的坐标是______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com