【题目】如图,矩形中,,,是边上一点,连接,将沿翻折,点的对应点是,连接,当是直角三角形时,则的值是________
【答案】3或6
【解析】
分两种情况讨论:①当∠AFE=90°时,易知点F在对角线AC上,设DE=x,则AE、EF均可用x表示,在Rt△AEF中利用勾股定理构造关于x的方程即可;②当∠AEF=90°时,易知F点在BC上,且四边形EFCD是正方形,从而可得DE=CD.
解:当E点与A点重合时,∠EAF的角度最大,但∠EAF小于90°,
所以∠EAF不可能为90°,
分两种情况讨论:
①当∠AFE=90°时,如图1所示,
根据折叠性质可知∠EFC=∠D=90°,
∴A、F、C三点共线,即F点在AC上,
∵四边形ABCD是矩形,
∴AC=,
∴AF=ACCF=ACCD=106=4,
设DE=x,则EF=x,AE=8x,
在Rt△AEF中,利用勾股定理可得AE2=EF2+AF2,
即(8x)2=x2+42,
解得x=3,即DE=3;
②当∠AEF=90°时,如图2所示,则∠FED=90°,
∵∠D=∠BCD=90°,DE=EF,
∴四边形EFCD是正方形,
∴DE=CD=6,
故答案为:3或6.
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,AC平分∠DAB交⊙O于点C,过点C的直线垂直于AD交AB的延长线于点P,弦CE交AB于点F,连接BE.
(1)求证:PD是⊙O的切线;
(2)若PC=PF,试证明CE平分∠ACB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止)
(1)转动转盘一次,求转出的数字是-2的概率;
(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图.已知A、B两点的坐标分别为A(0,),B(2,0).直线AB与反比例函数的图象交于点C和点D(1,a).
(1)求直线AB和反比例函数的解析式.
(2)求∠ACO的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,分别以AB、AD为边向外作等边△ABE、△ADF,延长CB交AE于点G,点G在点A、E之间,连接CE、CF,EF,则以下四个结论一定正确的是:①△CDF≌△EBC;②∠CDF=∠EAF;③△ECF是等边△;④CG⊥AE( )
A. 只有①② B. 只有①②③ C. 只有③④ D. ①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系 中,函数的图象与直线交于点A(3,m).
(1)求k、m的值;
(2)已知点P(n,n)(n>0),过点P作平行于轴的直线,交直线y=x-2于点M,过点P作平行于y轴的直线,交函数 的图象于点N.
①当n=1时,判断线段PM与PN的数量关系,并说明理由;
②若PN≥PM,结合函数的图象,直接写出n的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等边中,,射线,点从点出发沿射线以的速度运动,点从点出发沿射线以的速度运动,如果点同时出发,设运动时间为,当时,以为顶点的四边形是平行四边形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市射击队甲、乙两名队员在相同的条件下各射耙10次,每次射耙的成绩情况如图所示:
(1)请将下表补充完整:
(2)请从下列三个不同的角度对这次测试结果进行分析:
①从平均数和方差相结合看, 的成绩好些;
②从平均数和中位数相结合看, 的成绩好些;
③若其他队选手最好成绩在9环左右,现要选一人参赛,你认为选谁参加,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面材料:
在数学课上,老师提出利用尺规作图完成下面问题:
已知:∠ACB是△ABC的一个内角.
求作:∠APB=∠ACB.
小明的做法如下:
如图
①作线段AB的垂直平分线m;
②作线段BC的垂直平分线n,与直线m交于点O;
③以点O为圆心,OA为半径作△ABC的外接圆;
④在弧ACB上取一点P,连结AP,BP.
所以∠APB=∠ACB.
老师说:“小明的作法正确.”
请回答:
(1)点O为△ABC外接圆圆心(即OA=OB=OC)的依据是_____;
(2)∠APB=∠ACB的依据是_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com