【题目】已知△ABC和△DEC都是等腰直角三角形,C为它们的公共直角顶点,D、E分别在BC、AC边上.
(1)如图1,F是线段AD上的一点,连接CF,若AF=CF;
①求证:点F是AD的中点;
②判断BE与CF的数量关系和位置关系,并说明理由;
(2)如图2,把△DEC绕点C顺时针旋转α角(0<α<90°),点F是AD的中点,其他条件不变,判断BE与CF的关系是否不变?若不变,请说明理由;若要变,请求出相应的正确结论.
【答案】(1)①证明见解析;②BE=2CF,BE⊥CF;(2)仍然有BE=2CF,BE⊥CF.
【解析】
(1)①如图1,由AF=CF得到∠1=∠2,则利用等角的余角相等可得∠3=∠ADC,然后根据等腰三角形的判定定理得FD=FC,易得AF=FD;
②先利用等腰直角三角形的性质得CA=CB,CD=CE,则可证明△ADC≌△BEC得到AD=BE,∠1=∠CBE,由于AD=2CF,∠1=∠2,则BE=2CF,再证明∠CBE+∠3=90°,于是可判断CF⊥BE;
(2)延长CF到G使FG=CF,连结AG、DG,如图2,易得四边形ACDG为平行四边形,则AG=CD,AG∥CD,于是根据平行线的性质得∠GAC=180°-∠ACD,所以CD=CE=AG,再根据旋转的性质得∠BCD=α,所以∠BCE=∠DCE+∠BCD=90°+α=90°+90°-∠ACD=180°-∠ACD,得到∠GAC=∠ECB,接着可证明△AGC≌△CEB,得到CG=BE,∠2=∠1,所以BE=2CF,和前面一样可证得CF⊥BE.
(1)①证明:如图1,
∵AF=CF,
∴∠1=∠2,
∵∠1+∠ADC=90°,∠2+∠3=90°,
∴∠3=∠ADC,
∴FD=FC,
∴AF=FD,
即点F是AD的中点;
②BE=2CF,BE⊥CF.理由如下:
∵△ABC和△DEC都是等腰直角三角形,
∴CA=CB,CD=CE,
在△ADC和△BEC中
,
∴△ADC≌△BEC,
∴AD=BE,∠1=∠CBE,
而AD=2CF,∠1=∠2,
∴BE=2CF,
而∠2+∠3=90°,
∴∠CBE+∠3=90°,
∴CF⊥BE;
(2)仍然有BE=2CF,BE⊥CF.理由如下:
延长CF到G使FG=CF,连结AG、DG,如图2,
∵AF=DF,FG=FC,
∴四边形ACDG为平行四边形,
∴AG=CD,AG∥CD,
∴∠GAC+∠ACD=180°,即∠GAC=180°﹣∠ACD,
∴CD=CE=AG,
∵△DEC绕点C顺时针旋转α角(0<α<90°),
∴∠BCD=α,
∴∠BCE=∠DCE+∠BCD=90°+α=90°+90°﹣∠ACD=180°﹣∠ACD,
∴∠GAC=∠ECB,
在△AGC和△CEB中
,
∴△AGC≌△CEB,
∴CG=BE,∠2=∠1,
∴BE=2CF,
而∠2+∠BCF=90°,
∴∠BCF+∠1=90°,
∴CF⊥BE.
故答案为:(1)①证明见解析;②BE=2CF,BE⊥CF;(2)仍然有BE=2CF,BE⊥CF.
科目:初中数学 来源: 题型:
【题目】为了解甲、乙两班英语口语水平,每班随机抽取了10名学生进行了口语测验,测验成绩满分为10分,参加测验的10名学生成绩(单位:分)称为样本数据,抽样调查过程如下:
收集数据
甲、乙两班的样本数据分别为:
甲班:6 7 9 4 6 7 6 9 6 10
乙班:7 8 9 7 5 7 8 5 9 5
整理和描述数据
规定了四个层次:9分以上(含9分)为“优秀”,8-9分(含8分)为“良好”,6-8分(含6分)为“一般”,6分以下(不含6分)为“不合格”。按以上层次分布绘制出如下的扇形统计图。
请计算:(1)图1中,“不合格”层次所占的百分比;
(2)图2中,“优秀”层次对应的圆心角的度数。
分析数据
对于甲、乙两班的样本数据,请直接回答:
(1)甲班的平均数是7,中位数是_____;乙班的平均数是_____,中位数是7;
(2)从平均数和中位数看,____班整体成绩更好。
解决问题
若甲班50人,乙班40人,通过计算,估计甲、乙两班“不合格”层次的共有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将长方形ABCD沿着对角线BD折叠,使点C落在处,交AD于点E.
(1)试判断△BDE的形状,并说明理由;
(2)若,,求△BDE的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,DE是⊙O的直径,过点D作⊙O的切线AD,C是AD的中点,AE交⊙O于点B,且四边形BCOE是平行四边形。
(1)BC是⊙O的切线吗?若是,给出证明:若不是,请说明理由;
(2)若⊙O半径为1,求AD的长。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB∥CD,若按图中规律继续下去,则∠1+∠2+…+∠n等于( )
A. n·180° B. 2n·180° C. (n-1)·180° D. (n-1)2·180°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx(a≠0)的图象过原点O和点A(1, ),且与x轴交于点B,△AOB的面积为。
(1)求抛物线的解析式;
(2)若抛物线的对称轴上存在一点M,使△AOM的周长最小,求M点的坐标;
(3)点F是x轴上一动点,过F作x轴的垂线,交直线AB于点E,交抛物线于点P,且PE=,直接写出点E的坐标(写出符合条件的两个点即可)。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是按规律排列的一列式子:
第1个式子:;
第2个式子:;
第3个式子:;
……
(1)分别计算出这三个式子的结果;
(2)请按规律写出第2019个式子的形式(中间部分用省略号,两端部分必须写详细);
(3)计算第2019个式子的结果.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB是⊙O上的点,C是⊙O上的点,点D在AB的延长线上,∠BCD=∠BAC.
(1)求证:CD是⊙O的切线;
(2)若∠D=30°,BD=2,求图中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)对数轴上的点P进行如下操作:先把点P表示的数乘以,再把所得数对应的点向右平移1个单位,得到点P的对应点P′.点A,B在数轴t,对线段AB上的每个点进行上述操作后得到线段A′B′,其中点A,B的对应点分别为A′,B′.如图1,若点A表示的数是﹣3,则点A′表示的数是 ,若点B′表示的数是2,则点B表示的数是 ;已知线段AB上的点E经过上述操作后得到的对应点E'点E重合,则点E表示的数是 .
(2)在平面直角坐标系xOy中,已知△ABC的顶点A(﹣2,0),B(2,0),C(2,4),对△ABC及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同个实数a,将得到的点先向右平移m单位,冉向上平移n个单位(m>0,n>0),得到△ABC及其内部的点,其中点A,B的对应点分别为A′(1,2),B′(3,2).△ABC内部是否存在点F,使得点F经过上述操作后得到的对应点F′与点F重合,若存在,求出点F的坐标;若不存在请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com