精英家教网 > 初中数学 > 题目详情

【题目】如图,已知AB是⊙O上的点,C是⊙O上的点,点DAB的延长线上,∠BCD=BAC.

(1)求证:CD是⊙O的切线;

(2)若∠D=30°,BD=2,求图中阴影部分的面积.

【答案】(1)证明见解析;(2)阴影部分面积为

【解析】1)连接OC,易证∠BCD=OCA,由于AB是直径,所以∠ACB=90°,所以∠OCA+OCB=BCD+OCB=90°,CD是⊙O的切线

(2)设⊙O的半径为r,AB=2r,由于∠D=30°,OCD=90°,所以可求出r=2,AOC=120°,BC=2,由勾股定理可知:AC=2,分别计算△OAC的面积以及扇形OAC的面积即可求出阴影部分面积.

1)如图,连接OC,

OA=OC,

∴∠BAC=OCA,

∵∠BCD=BAC,

∴∠BCD=OCA,

AB是直径,

∴∠ACB=90°,

∴∠OCA+OCB=BCD+OCB=90°

∴∠OCD=90°

OC是半径,

CD是⊙O的切线

(2)设⊙O的半径为r,

AB=2r,

∵∠D=30°,OCD=90°,

OD=2r,COB=60°

r+2=2r,

r=2,AOC=120°

BC=2,

∴由勾股定理可知:AC=2

易求SAOC=×2×1=

S扇形OAC=

∴阴影部分面积为.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+6x+cx轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.

(1)求抛物线的解析式;

(2)过点A的直线交直线BC于点M.

①当AMBC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;

②连接AC,当直线AM与直线BC的夹角等于∠ACB2倍时,请直接写出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC和△DEC都是等腰直角三角形,C为它们的公共直角顶点,D、E分别在BC、AC边上.

(1)如图1,F是线段AD上的一点,连接CF,若AF=CF;

①求证:点FAD的中点;

②判断BECF的数量关系和位置关系,并说明理由;

(2)如图2,把△DEC绕点C顺时针旋转α角(0<α<90°),点FAD的中点,其他条件不变,判断BECF的关系是否不变?若不变,请说明理由;若要变,请求出相应的正确结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,∠A,∠B,∠C的对边分别是abc,则满足下列条件的一定是直角三角形的是(  )

A. A:∠B:∠C345B. abc13

C. a7b24c25D. a32b42c52

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某驻村扶贫小组为解决当地贫困问题,带领大家致富.经过调查研究,他们决定利用当地生产的甲乙两种原料开发A,B两种商品,为科学决策,他们试生产A、B两种商品100千克进行深入研究,已知现有甲种原料293千克,乙种原料314千克,生产1千克A商品,1千克B商品所需要的甲、乙两种原料及生产成本如下表所示.

甲种原料(单位:千克)

乙种原料(单位:千克)

生产成本(单位:元)

A商品

3

2

120

B商品

2.5

3.5

200

设生产A种商品x千克,生产A、B两种商品共100千克的总成本为y元,根据上述信息,解答下列问题:

(1)求yx的函数解析式(也称关系式),并直接写出x的取值范围;

(2)x取何值时,总成本y最小?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,⊙P的圆心是(2,a)(a >0),半径是2,与y轴相切于点C,直线y=x被⊙P截得的弦AB的长为,则a的值是( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图ABC中,ACB=90°ABC=25°OAB的中点. OA绕点O逆时针旋转θ °OP0<θ<180,当BCP恰为轴对称图形时,θ的值为_____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,反比例函数的图象与一次函数的图象交于点AB,点B的横坐标是4.点P是第一象限内反比例函数图象上的动点,且在直线AB的上方.

(1)k的值

(2)设直线PAPBx轴分别交于点MN,求证:△PMN是等腰三角形;

(3)设点Q是反比例函数图象上位于PB之间的动点(与点PB不重合),连接AQBQ,比较∠PAQ与∠PBQ的大小,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把代数式通过配凑等手段,得到局部完全平方式,再进行有关运算和解题,这种解题方法叫做配方法.

如:①用配方法分解因式:a2+6a+8

解:原式=a2+6a+8+11a2+6a+91=(a+2)(a+4

Ma22ab+2b22b+2,利用配方法求M的最小值,

解:a22ab+2b22b+2a22ab+b2+b22b+1+1=(ab2+b12+1

∵(ab2≥0,(b12≥0

∴当ab1时,M有最小值1

请根据上述材料解决下列问题:

1)在横线上添加一个常数,使之成为完全平方式:x2x+   

2)用配方法因式分解:x24xy+3y2

3)若Mx2+2x1,求M的最小值.

4)已知x2+2y2+z22xy2y4z+50,则x+y+z的值为   

查看答案和解析>>

同步练习册答案