精英家教网 > 初中数学 > 题目详情

【题目】已知海岛A的周围6km的范围内有暗礁,一艘海轮在B处测得海岛A在北偏东30°的方向;向正北方向航行6km到达C处,又测得该岛在北偏东60°的方向,如果海轮不改变航向,继续向正北航行,有没有触礁的危险?

【答案】海轮不改变航向,继续向正北航行,有触礁的危险.

【解析】

过点AAD⊥BD于点D,在Rt△ACD中,通过∠ACD60°AD表示出CD,在Rt△ABD中,通过∠ABC30°AD表示出BD,算出AD6比较即可.

解:过点AAD⊥BD于点D,在Rt△ACD中,

∵∠ACD60°

∴∠DAC=30°,则AC=2CD,,即CD,

同理,在Rt△ABD中,

则∠ABC=30°,则AB=2AD

BD

BCBDCD6,解得AD36

∴如果海轮不改变航向,继续向正北航行,有触礁的危险.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面角坐标系中,抛物线C1:y=ax2+bx﹣1经过点A(﹣2,1)和点B(﹣1,﹣1),抛物线C2:y=2x2+x+1,动直线x=t与抛物线C1交于点N,与抛物线C2交于点M.

(1)求抛物线C1的表达式;

(2)直接用含t的代数式表示线段MN的长;

(3)当AMN是以MN为直角边的等腰直角三角形时,求t的值;

(4)在(3)的条件下,设抛物线C1y轴交于点P,点My轴右侧的抛物线C2上,连接AMy轴于点k,连接KN,在平面内有一点Q,连接KQQN,当KQ=1且∠KNQ=BNP时,请直接写出点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,已知AB=3,点E,F分别在BC、CD上,且∠BAE=30°,∠DAF=15°,则AEF的面积为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙OF,连接DF、AF,求ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OEAB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OEAB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD

OEAB

∴∠COE=CADEOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切线;

(2)连接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB

AB=5,

AC是直径,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面积为

型】解答
束】
25

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在五一期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:

(1)小明他们一共去了几个成人,几个学生?

(2)请你帮助小明算一算,用哪种方式购票更省钱?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在每个小正方形的边长为1的网格中,点A、B、C均在格点上,在△ABC的内部有一点P,满足SPAB:SPBC:SPCA=1:2:3,请在如图所示的网格中,用无刻度直尺画出点P(保留画图痕迹)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某经销商销售一种产品,这种产品的成本价为10元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克,且10≤x≤18)之间的函数关系如图所示:

(1)求y(千克)与销售价z的函数关系式;

(2)该经销商想要每天获得150元的销售利润,销售价应定为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】公元3世纪,古希腊数学家丢番图(Diophantus)在其《算术》一书中设置了以下问题:已知两正整数之和为20,乘积为96,求这两个数.因为两数之和为20,所以这两个数不可能同时大于10,也不可能同时小于10,必定是一个大于10,一个小于10.根据如图所示的设法,可设一个数为,则另一个数为,根据两数之积为96,可得.请根据以上思路解决下列问题:

1)若两个正整数之和为100,大数比小数大,根据丢番图的设法,这两个正整数可表示为_______

2)请你根据丢番图的运算方法,计算的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知P(33),点BA分别在x轴正半轴和y轴正半轴上,∠APB90°,则OAOB________

查看答案和解析>>

同步练习册答案