精英家教网 > 初中数学 > 题目详情

如图,抛物线数学公式与x轴交于点A和点B,与y轴交于点C,已知点B的坐标为(3,0).
(1)求a的值和抛物线的顶点坐标;
(2)分别连接AC、BC.在x轴下方的抛物线上求一点M,使△AMC与△ABC的面积相等;
(3)设N是抛物线对称轴上的一个动点,d=|AN-CN|.探究:是否存在一点N,使d的值最大?若存在,请直接写出点N的坐标和d的最大值;若不存在,请简单说明理由.

解:(1)∵抛物线y=ax2-x+2经过点B(3,0),
∴9a-×3+2=0,
解得a=-
∴y=-x2-x+2,
∵y=-x2-x+2=-(x2+3x)+2=-(x+2+
∴顶点坐标为(-);

(2)∵抛物线y=-x2-x+2的对称轴为直线x=-
与x轴交于点A和点B,点B的坐标为(3,0),
∴点A的坐标为(-6,0).
又∵当x=0时,y=2,
∴C点坐标为(0,2).
设直线AC的解析式为y=kx+b,
,解得
∴直线AC的解析式为y=x+2.
∵S△AMC=S△ABC
∴点B与点M到AC的距离相等,
又∵点B与点M都在AC的下方,
∴BM∥AC,
设直线BM的解析式为y=x+n,
将点B(3,0)代入,得×3+n=0,
解得n=-1,
∴直线BM的解析式为y=x-1.
,解得
∴M点的坐标是(-9,-4);

(3)在抛物线对称轴上存在一点N,能够使d=|AN-CN|的值最大.理由如下:
∵抛物线y=-x2-x+2与x轴交于点A和点B,
∴点A和点B关于抛物线的对称轴对称.
连接BC并延长,交直线x=-于点N,连接AN,则AN=BN,此时d=|AN-CN|=|BN-CN|=BC最大.
设直线BC的解析式为y=mx+t,将B(3,0),C(0,2)两点的坐标代入,

∴直线BC的解析式为y=-x+2,
当x=-时,y=-×(-)+2=3,
∴点N的坐标为(-,3),d的最大值为BC==
分析:(1)先把点B的坐标代入y=ax2-x+2,可求得a的值,再利用配方法将一般式化为顶点式,即可求得抛物线的顶点坐标;
(2)先由抛物线的解析式y=-x2-x+2,求出与x轴的交点A的坐标,与y轴的交点C的坐标,再由△AMC与△ABC的面积相等,得出这两个三角形AC边上的高相等,又由点B与点M都在AC的下方,得出BM∥AC,则点M既在过B点与AC平行的直线上,又在抛物线y=-x2-x+2上,所以先运用待定系数法求出直线AC的解析式为y=x+2,再设直线BM的解析式为y=x+n,将点B(3,0)代入,求出n的值,得到直线BM的解析式为y=x-1,然后解方程组,即可求出点M的坐标;
(3)连接BC并延长,交抛物线的对称轴x=-于点N,连接AN,根据轴对称的性质得出AN=BN,并且根据三角形三边关系定理得出此时d=|AN-CN|=|BN-CN|=BC最大.运用待定系数法求出直线BC的解析式,再将x=-代入,求出y的值,得到点N的坐标,然后利用勾股定理求出d的最大值BC即可.
点评:本题是二次函数的综合题型,其中涉及到运用待定系数法求一次函数、二次函数的解析式,二次函数的性质,三角形的面积,轴对称的性质等知识,难度适中.其中第(2)小题根据三角形的面积公式及平行线的性质得出BM∥AC是关键,第(3)小题根据轴对称及三角形三边关系定理确定点N的位置是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,抛物线与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C(0,-3),设抛物线的顶点为D.
(1)求该抛物线的解析式与顶点D的坐标;
(2)以B、C、D为顶点的三角形是直角三角形吗?为什么?
(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCD相似?若存在,请指出符合条件的点P的位置,并直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,抛物线与x轴交于A(x1,0)、B(x2,0)两点,且x1<x2,与y轴交于点C(0,-4),其中x1,x2是方程x2-4x-12=0的两个根.
(1)求抛物线的解析式;
(2)点M是线段AB上的一个动点,过点M作MN∥BC,交AC于点N,连接CM,当△CMN的面积最大时,求点M的坐标;
(3)点D(4,k)在(1)中抛物线上,点E为抛物线上一动点,在x轴上是否存在点F,使以A、D、E、F为顶点的四边形是平行四边形?如果存在,求出所有满足条件的点F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•历下区一模)如图,抛物线与x轴交于A(-1,0),B(4,0)两点,与y轴交于C(0,3),M是抛物线对称轴上的任意一点,则△AMC的周长最小值是
10
+5
10
+5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线与y轴交于点A(0,4),与x轴交于B、C两点.其中OB、OC是方程的x2-10x+16=0两根,且OB<OC.
(1)求抛物线的解析式;
(2)直线AC上是否存在点D,使△BCD为直角三角形.若存在,求所有D点坐标;反之说理;
(3)点P为x轴上方的抛物线上的一个动点(A点除外),连PA、PC,若设△PAC的面积为S,P点横坐标为t,则S在何范围内时,相应的点P有且只有1个.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线与x轴交于A、B(6,0)两点,且对称轴为直线x=2,与y轴交于点C(0,-4).
(1)求抛物线的解析式;
(2)点M是抛物线对称轴上的一个动点,连接MA、MC,当△MAC的周长最小时,求点M的坐标;
(3)点D(4,k)在(1)中抛物线上,点E为抛物线上一动点,在x轴上是否存在点F,使以A、D、E、F为顶点的四边形是平行四边形,如果存在,直接写出所有满足条件的点F的坐标,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案