精英家教网 > 初中数学 > 题目详情

【题目】如图,等腰三角形ABC的底边BC长为6,面积是18,腰AC的垂直平分线EF分别交ACABEF点,若点DBC边的中点,点M为线段EF上一动点,则CDM的周长的最小值为_____

【答案】9

【解析】

连接ADAM,由于ABC是等腰三角形,点DBC边的中点,故ADBC,再根据三角形的面积公式求出AD的长,再根据EF是线段AC的垂直平分线可知,点A关于直线EF的对称点为点CMA=MC,推出MC+DM=MA+DM≥AD,故AD的长为BM+MD的最小值,由此即可得出结论.

连接ADMA

∵△ABC是等腰三角形,点DBC边的中点,

ADBC

SABCBCAD×6×AD18,解得AD6

EF是线段AC的垂直平分线,

∴点A关于直线EF的对称点为点CMAMC

MC+DMMA+DMAD

AD的长为CM+MD的最小值,

∴△CDM的周长最短=(CM+MD+CDAD+BC6+×66+39

故答案为:9

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】甲、乙两车从A地开往B地,甲车比乙车早出发2小时,并且在途中休息了0.5小时,休息前后速度相同,如图是甲、乙两车行驶的距离ykm)与时间xh)的函数图象.解答下列问题:

1)图中a的值为;

2)当x1.5h)时,求甲车行驶路程ykm)与时间xh)的函数关系式;

3)当甲车行驶多长时间后,两车恰好相距40km

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有下列六个命题:①相等的角是对顶角;②两直线平行,同位角相等;③若一个三角形的两个内角分别为,则这个三角形是直角三角形;④全等三角形的对应角相等。其中逆命题是假命题的个数有(

A.0B.1C.2D.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】求证:相似三角形对应边上的中线之比等于相似比.

要求:①根据给出的△ABC及线段A'B′,A′(A′=A),以线段A′B′为一边,在给出的图形上用尺规作出△A'B′C′,使得△A'B′C′∽△ABC,不写作法,保留作图痕迹;

②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.

(1)若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;

(2)求矩形菜园ABCD面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:射线OP就是∠BOA的角平分线.他这样做的依据是( )

A.角平分线上的点到这个角两边的距离相等

B.角的内部到角的两边的距离相等的点在角的平分线上

C.三角形三条角平分线的交点到三条边的距离相等

D.以上均不正确

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AD是∠BAC的平分线,AD的垂线平分线交AB于点F,交BC的延长线于点E,连接AE,DF.

求证:(1)∠EAD=∠EDA;(2)DF//AC;(3)∠EAC=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】身高米的兵兵在建筑物前放风筝,风筝不小心挂在了树上.在如图所示的平面图形中,矩形代表建筑物,兵兵位于建筑物前点处,风筝挂在建筑物上方的树枝点处(点的延长线上).经测量,兵兵与建筑物的距离米,建筑物底部宽米,风筝所在点与建筑物顶点及风筝线在手中的点在同一条直线上,点距地面的高度米,风筝线与水平线夹角为

求风筝距地面的高度

在建筑物后面有长米的梯子,梯脚在距墙米处固定摆放,通过计算说明:若兵兵充分利用梯子和一根米长的竹竿能否触到挂在树上的风筝?

(参考数据:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市准备在相距千米的两工厂间修一条笔直的公路,但在地北偏东方向、地北偏西方向的处,有一个半径为千米的住宅小区(如图),问修筑公路时,这个小区是否有居民需要搬迁?(参考数据:

查看答案和解析>>

同步练习册答案