精英家教网 > 初中数学 > 题目详情

【题目】如图,四边形ABCD为矩形,过点D作对角线BD的垂线,交BC的延长线于点E,取BE的中点F,连接DF,DF=4.设AB=x,AD=y,则x2+(y﹣4)2的值为 .

【答案】16
【解析】∵四边形ABCD是矩形,AB=x,AD=y,
∴CD=AB=x,BC=AD=y,∠BCD=90°.
又∵BD⊥DE,点F是BE的中点,DF=4,
∴BF=DF=EF=4.
∴CF=4﹣BC=4﹣y.
∴在Rt△DCF中,DC2+CF2=DF2 , 即x2+(4﹣y)2=42=16,
∴x2+(y﹣4)2=x2+(4﹣y)2=16.
故答案是:16.
【考点精析】关于本题考查的直角三角形斜边上的中线和勾股定理的概念,需要了解直角三角形斜边上的中线等于斜边的一半;直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了相应“足球进校园”的号召,某体育用品商店计划购进一批足球,第一次用6000元购进A品牌足球m个,第二次又用6000元购进B品牌足球,购进的B品牌足球的数量比购进的A品牌足球多30个,并且每个A品牌足球的进价是每个B品牌足球的进价的
(1)求m的值;
(2)若这两次购进的A,B两种品牌的足球分别按照a元/个, a元/个两种价格销售,全部销售完毕后,可获得的利润不低于4800元,求出a的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC和△DBC中,∠ACB=∠DBC=90°,E是BC的中点,DE⊥AB,垂足为点F,且AB=DE.

(1)求证:BD=BC;
(2)若BD=6cm,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有一矩形纸片ABCD,AB=6,AD=8,将纸片折叠使AB落在AD边上,折痕为AE,再将△ABE以BE为折痕向右折叠,AE与CD交于点F,则 的值是(
A.1
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AD是△ABC的角平分线,⊙O经过A、B、D三点.过点B作BE∥AD,交⊙O于点E,连接ED。

(1)求证:ED∥AC
(2)若BD=2CD,设△EBD的面积为S1 , △ADC的面积为S2 , 且S12﹣16S2+4=0,求△ABC的面积

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于x的一元二次方程ax2﹣3x﹣1=0的两个不相等的实数根都在﹣1和0之间(不包括﹣1和0),则a的取值范围是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB∥CD,点E,F分别在AB,CD上,连接EF,∠AEF、∠CFE的平分线交于点G,∠BEF、∠DFE的平分线交于点H.

(1)求证:四边形EGFH是矩形
(2)小明在完成(1)的证明后继续进行了探索,过G作MN∥EF,分别交AB,CD于点M,N,过H作PQ∥EF,分别交AB,CD于点P,Q,得到四边形MNQP,此时,他猜想四边形MNQP是菱形,请在下列框中补全他的证明思路.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线y=2x+(3﹣a)与x轴的交点在A(2,0)、B(3,0)之间(包括A、B两点),则a的取值范围是 .

查看答案和解析>>

同步练习册答案