【题目】如图,一次函数y=-x+4的图象与x轴和y轴分别交于点A和B,再将△AOB沿直线CD对折,使点A与点B重合、直线CD与x轴交于点C,与AB交于点D.
(1)点A的坐标为_________,点B的坐标为_________;
(2)在直线AB上是否存在点P使得△APO的面积为12?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由;
(3)求OC的长度.
【答案】(1)(8,0),(0,4);(2)(2,3);
(14,-3);(3)OC=3,
【解析】
(1)令x=0和y=0即可求出点A,B的坐标;(2)设出点P的坐标,利用三角形的面积公式,分两种情况解答即可;(3)设出点C坐标,表示出BC,最后利用勾股定理即可求出OC.
解:(1)令x=0,则y=4,
∴B(0,4),
令y=0,则0=-x+4,
∴x=8,
∴A(8,0),
故答案为:(8,0),(0,4);
(2)设P(m,n),
∵A(8,0),O(0,0),∴AO=8
∴=
×AO×
=12,即12=4
,
∴n=±3,
当n=3时,3=-m+4, ∴m=2, ∴
(2,3);
当n=-3时,-3=-m+4, ∴m=2, ∴
(14,-3);
∴存在符合条件的点为:(2,3);
(14,-3);
(3)设OC=a,
∴AC=8-a,
由折叠知,BC=AC=8-a,
在Rt△BOC中,OB=4,
根据勾股定理得,BC2-OC2=OB2,
∴(8-a)2-a2=16,
∴a=3,
即:OC=3,
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=ax+b的图象与反比例函数的图象交于C,D两点,与x,y轴交于B,A两点,且tan∠ABO=
,OB=4,OE=2.
(1)求一次函数的解析式和反比例函数的解析式;
(2)求△OCD的面积;
(3)根据图象直接写出一次函数的值大于反比例函数的值时,自变量x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,AB=5,AC=4,∠B,∠C的平分线相交于点O,OM∥AB,ON∥AC分别与BC交于点M、N,则△OMN的周长为____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC平移,使点A变换为点A',点B'、C'分别是B、C的对应点.
(1)请画出平移后的△A'B'C',并求△A'B'C'的面积= ;
(2)请在AB上找一点P,使得线段CP平分△ABC的面积,在图上作出线段CP;
(3)请在图中画出过点C且平行于AB的直线CM.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为提高饮水质量,越来越多的居民开始选购家用净水器.一商家抓住商机,从厂家购进了A、B两种型号家用净水器共160台,A型号家用净水器进价是150元/台,B型号家用净水器进价是350元/台,购进两种型号的家用净水器共用去36000元.
(1)求A、B两种型号家用净水器各购进了多少台;
(2)为使每台B型号家用净水器的毛利润是A型号的2倍,且保证售完这160台家用净水器的毛利润不低于11000元,求每台A型号家用净水器的售价至少是多少元?(注:毛利润=售价﹣进价)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小亮将笔记本电脑水平放置在桌子上,显示屏OA与底板OB所在水平线的夹角为120°时,感觉最舒适(如图1),侧面示意图为图2;使用时为了散热,她在底板下面垫入散热架BCO'后,电脑转到B O′A′位置(如图3),侧面示意图为图4.已知OA=OB=28cm,O′C⊥OB于点C,O′C=14cm.
(参考数据:,
,
)
(1)求∠CBO'的度数.
(2)显示屏的顶部A'比原来升高了多少cm?(结果精确到0.1cm)
(3)如图4,垫入散热架后,要使显示屏O′A′与水平线的夹角仍保持120°,则显示屏O′A′应绕点O'按顺时针方向旋转多少度?(不写过程,只写结果)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】设(a,b)是一次函数y=(k-2)x+m与反比例函数的图象的交点,且a、b是关于x的一元二次方程
的两个不相等的实数根,其中k为非负整数,m、n为常数.
(1)求k的值;
(2)求一次函数与反比例函数的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=ax2+bx+c过点A(﹣3,0),B(﹣2,3),C(0,3),顶点为D.
(1)求抛物线的解析式;
(2)设点M(1,m),当MB+MD的值最小时,求m的值;
(3)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足为A,B,连接AB,下列结论中不一定成立的是( )
A.PA=PBB.PO平分∠APBC.OA=OBD.AB平分OP
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com