精英家教网 > 初中数学 > 题目详情

如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(-8,0),直线BC经过点B(-8,6),C(0,6),将四边形OABC绕点O按顺时针方向旋转α度(0<α≤180°)得到四边形OA′B′C′,此时直线OA′、直线B′C′分别与直线BC相交于P、Q.在四边形OABC旋转过程中,若BP=B′Q,则点P的坐标为________.

(-2,6)
分析:连接OB、OQ、OB′,根据旋转变换的性质可得OB=OB′,∠OBC=∠OB′C,然后利用“边角边”证明△OBP和△OB′Q全等,根据全等三角形对应边相等可得OP=OQ,再根据等腰三角形三线合一可得CP=CQ,然后根据BP=B′Q推出CP=C′P,利用“HL”证明△OCP、△OCQ、△OC′Q全等,根据全等三角形对应角相等可得∠COP=∠COQ=∠C′OQ,从而求出∠OCP=30°,最后利用∠COP的正切值求出CP的值,然后即可写出点P的坐标.
解答:解:如图,连接OB、OQ、OB′,
∵四边形OABC绕点O按顺时针方向旋转得到四边形OA′B′C′,
∴OB=OB′,∠OBC=∠OB′C,
在△OBP和△OB′Q中,

∴△OBP≌△OB′Q(SAS),
∴OP=OQ,
∵直线BC经过点B(-8,6),C(0,6),
∴BC⊥y轴,
∴CP=CQ,
∵BP=B′Q,B′C′=BC,
∴BC-BP=B′C′-B′Q,
即CP=C′Q,
∴CP=CQ=C′Q,
又∵OP=OQ(已证),
∴△OCP≌△OCQ≌△OC′Q(HL),
∴∠COP=∠COQ=∠C′OQ,
∴∠OCP=×90°=30°,
∵C(0,6),
∴OC=6,
PC=OC•tan∠COP=6×=2
∴点P的坐标为(-2,6).
故答案为:(-2,6).
点评:本题考查了坐标与图形变化-旋转,主要利用了旋转变换只改变图形的位置不改变图形的形状与大小的性质,然后通过证明三角形全等求出∠OCP=30°是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案