【题目】已知a+b=1,ab=﹣1,设S1=a+b,S2=a2+b2,S3=a3+b3,…,Sn=an+bn
(1)计算S2.
(2)请阅读下面计算S3的过程:
∵a+b=1,ab=﹣1
∴S3=a3+b3=(a+b)(a2+b2)﹣ab(a+b)=1×S2﹣(﹣1)=S2+1= .
你读懂了吗?请你先填空完成(2)中S3的计算结果,再用你学到的方法计算S4
(3)试写出Sn﹣2,Sn﹣1,Sn三者之间的数量关系式(不要求证明,且n是不小于2的自然数),根据得出的数量关系计算S7.
【答案】(1)3;(2)4,S4=7;(3)Sn﹣2+Sn﹣1=Sn,S7=29.
【解析】
(1)根据完全平方公式即可求出S2;
(2)根据得出的结论,代入即可求出S3;根据完全平方公式即可求出S4;
(3)根据(1)(2)求出的结果得出规律,即可求出答案.
解:(1)S2=a2+b2=(a+b)2﹣2ab=12﹣2×(﹣1)=3;
(2)S3=S2+1=3+1=4;
∵S4=a4+b4=( a2+b2)2﹣2a2b2=( a2+b2)2﹣2(ab)2,
又∵a2+b2=3,ab=﹣1,
∴S4=7,
故答案为:4.
(3)∵S1=1,S2=3,S3=4,S4=7,
∴S1+S2=S3,S2+S3=S4.
猜想:Sn﹣2+Sn﹣1=Sn.
∵S3=4,S4=7,
∴S5=S3+S4=4+7=11,
∴S6=S4+S5=7+11=18,
∴S7=S5+S6=11+18=29.
科目:初中数学 来源: 题型:
【题目】如图是位于陕西省西安市荐福寺内的小雁塔,是中国早期方形密檐式砖塔的典型作品,并作为丝绸之路的一处重要遗址点,被列入《世界遗产名录》.小铭、小希等几位同学想利用一些测量工具和所学的几何知识测量小雁塔的高度,由于观测点与小雁塔底部间的距离不易测量,因此经过研究需要进行两次测量,于是在阳光下,他们首先利用影长进行测量,方法如下:小铭在小雁塔的影子顶端D处竖直立一根木棒CD,并测得此时木棒的影长DE=2.4米;然后,小希在BD的延长线上找出一点F,使得A、C、F三点在同一直线上,并测得DF=2.5米.已知图中所有点均在同一平面内,木棒高CD=1.72米,AB⊥BF,CD⊥BF,试根据以上测量数据,求小雁塔的高度AB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知甲,乙两组数据的折线图如图所示,设甲,乙两组数据的方差分别为S2甲,S2乙,则S2甲与S2乙大小关系为( )
A.S2甲>S2乙B.S2甲=S2乙C.S2甲<S2乙D.不能确定
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC在直角坐标系中的位置如图,其中A点的坐标是(﹣2,3)
(1)△ABC绕点O顺时针旋转90°得到△A1B1C1,请作出△A1B1C1,并写出A点的对应点A1的坐标;
(2)若△ABC经过平移后A点的对应点A2的坐标是(2,﹣1),请作△A2B2C2,并计算平移的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,且经过点(﹣1,0),下列四个结论:①如果点(,y1)和(2,y2)都在抛物线上,那么y1<y2;②b2﹣4ac>0;③m(am+b)<a+b(m≠1的实数);④;其中正确的有( )
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:,,,,垂足分别为,,
(1)如图1,①线段和的数量关系是__________;
②请写出线段,,之间的数量关系并证明.
(2)如图2,若已知条件不变,上述结论②还成立吗?如果不成立,请直接写出线段,,之间的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),在中,,,点是斜边的中点,点,分别在线段,上, 且.
(1)求证:为等腰直角三角形;
(2)若的面积为7,求四边形的面积;
(3)如图(2),如果点运动到的延长线上时,点在射线上且保持,还是等腰直角三角形吗.请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在进行二次根式化简时,我们有时会碰上如,,一样的式子,这样的式子我们可以将其进一步化简=,,以上这种化简的方法叫做分母有理化,请利用分母有理化解答下列问题:
(1)化简:;
(2)若a是的小数部分,求的值;
(3)矩形的面积为3+1,一边长为﹣2,求它的周长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com