精英家教网 > 初中数学 > 题目详情
7.如果,过圆O外一点P引圆O的切线PA,PB,切点为A,B,C为圆上一点,若∠APB=50°,则∠ACB=(  )
A.50°B.60°C.65°D.70°

分析 连结OA,先根据切线的性质得∠PAO=∠PBO=90°,再利用四边形的内角和得到可计算出∠AOB=180°-∠P=130°,然后根据圆周角定理即可得到∠ACB的度数.

解答 解:连结OA,如图所示:
∵PA、PB是⊙O的切线,
∴OA⊥PA,OB⊥PB,
∴∠PAO=∠PBO=90°,
∴∠AOB+∠P=180°,
∴∠AOB=180°-50°=130°,
∴∠ACB=$\frac{1}{2}$∠AOB=65°.
故选C.

点评 本题考查了切线的性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.也考查了圆周角定理.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

1.一辆货车向相距120千米的某地运送货需要1小时,前15分钟已经走了30千米,则后45分钟,该车至少应以150千米/时的速度行驶,才能及时送到药品.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.我们把两条中线互相垂直的三角形称为“中垂三角形”.例如图1,图2,图3中,AF,BE是△ABC的中线,AF⊥BE,垂足为P.像△ABC这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.

特例探索
(1)如图1,当∠ABE=45°,$c=2\sqrt{2}$时,a=2$\sqrt{5}$,b=2$\sqrt{5}$;
如图2,当∠ABE=30°,c=4时,a=2$\sqrt{13}$,b=2$\sqrt{7}$;
归纳证明
(2)请你观察(1)中的计算结果,猜想a2,b2,c2三者之间的关系,用等式表示出来,并利用图3证明你发现的关系式;
拓展应用
(3)如图4,在?ABCD中,点E,F,G分别是AD,BC,CD的中点,BE⊥EG,AD=$2\sqrt{17}$,AB=6.求AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.在四边形ABCD中,∠DAB=∠ABC=90°,AD=AB=4cm,BC=8cm,点N从点A出发,沿AB向点B运动,速度是1cm/s,过点N作NM⊥BD于点M,交BC于点E,过点E作EF⊥CD于点F,连接NF交BD于点G,连接BF交AE于点H,连接GH.设运动时间是t(s).
(1)如图1,当t=0时,求证:GF=HF;
(2)如图2,当t为多少时,△NEF的面积为6cm2
(3)如图3,连接GE,当t为多少时,GE=BE,此时NF与BC的位置关系是什么?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图,在⊙O中有一个菱形ABCO,∠ABC=120°,OD⊥CB于点E,交⊙O于点D,若OE=2$\sqrt{3}$,则阴影部分的面积为(  )
A.4π-12$\sqrt{3}$B.4π-6$\sqrt{3}$C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.计算:
(1)2(a+1)2+(a+2)(1-2a)
(2)$(\frac{{{x^2}+4}}{{2{x^2}-4x}}-\frac{2}{x-2})÷\frac{{{x^2}-4}}{2x}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.下列各式计算结果为a7的是(  )
A.(-a)2•(-a)5B.(-a)2•(-a5C.(-a2)•(-a)5D.(-a)•(-a)6

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元.为了扩大销售,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天可多售出2件.
(1)若使商场平均每天赢利1200元,则每件衬衫应降价多少元?
(2)若想获得最大利润,每件衬衫应降价多少元?最大利润为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.准备两组相同的牌,每组两张且大小相同,两张牌的牌面数字分别是0,1,从每组牌中各摸出一张牌,两张牌的牌面数字和为1的概率为(  )
A.$\frac{3}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

同步练习册答案