为了考察冰川融化的状况,一支科考队在某冰川上设一定一个以大本营O为圆心,半径为4km 圆形考察区域,线段P1、P2是冰川的部分边界线(不考虑其它边界),当冰川融化时,边界线沿着与其垂直的方向朝考察区域平行移动.若经过n年,冰川的边界线P1P2移动的距离为s(km),并且s与n(n为正整数)的关系是.以O为原点,建立如图所示的平面直角坐标系,其中P1、P2的坐标分别是(–4,9)、(–13,–3).
(1)求线段P1P2所在的直线对应的函数关系式;
(2)求冰川的边界线移动到考察区域所需要的最短时间.
(1)线段P1P2所在的直线对应的函数关系式为:y= x+ ;
(2)冰川的边界线移动到考察区域所需要的最短时间为6年.
解析试题分析:(1)设出函数关系式,再根据P1、P2的坐标即可求出;
(2)先求出冰川的边界线移动到考察区域所需要的最短距离s,再根据,求出符合条件n的值即可.
试题解析:(1)设线段P1P2所在的直线对应的函数关系式为:y=kx+b(k≠0),
根据P1、P2的坐标分别是(–4,9)、(–13,–3),有:
,
解得:,
所以线段P1P2所在的直线对应的函数关系式为:y= x+ ;
(2)设线段P1P2交x轴于P3,延长线段P2P1交y轴于P4,
∵线段P1P2所在的直线对应的函数关系式为:y= x+ ,
∴P3(,0),P4(0,),
∴OP3=,OP4=,
过点O作OH ⊥P1P2,垂足为H,
∵,
∴,
当P1P2与⊙O相切时,冰川移动的距离最短,最短距离为:s="OH-4=" -4= ,
∴,
解得:n=6,或n=-4.8(舍去)
答:冰川的边界线移动到考察区域所需要的最短时间为6年.
.
考点:1.一次函数2.直线与圆的位置关系.
科目:初中数学 来源: 题型:解答题
如图,一次函数的图象分别与x轴、y轴交于点A、B,以线段AB为边在第一象限内作等腰Rt△ABC,∠BAC=90°.
(1)求点C的坐标;
(2)在x轴上求一点P,使它到B、C两点的距离之和最小.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
甲、乙两车都从A地前往B地,如图分别表示甲、乙两车离A地的距离S(千米)与时间t(分钟)的函数关系.已知甲车出发10分钟后乙车才出发,甲车中途因故停止行驶一段时间后按原速继续驶向B地,最终甲、乙两车同时到达B地,根据图中提供的信息解答下列问题:
(1)甲、乙两车行驶时的速度分别为多少?
(2)乙车出发多少分钟后第一次与甲车相遇?
(3)甲车中途因故障停止行驶的时间为多少分钟?
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
某服装公司试销一种成本为每件50元的T恤衫,规定试销时的销售单价不低于成本价,又不高于每件70元,试销中销售量(件)与销售单价(元)的关系可以近似的看作一次函数(如图).
(1)求与之间的函数关系式;
(2)设公司获得的总利润(总利润总销售额总成本)为元,求与之间的函数关系式,并写出自变量的取值范围;根据题意判断:当取何值时,的值最大?最大值是多少?
(3)若公司要保证利润不能低于4000元,则销售单价x的取值范围为多少元(可借助二次函数的图像解答)?
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
直线y=﹣x+6与坐标轴分别交于A、B两点,动点P、Q同时从O点出发,同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O→B→A运动.
(1)直接写出A、B两点的坐标;
(2)设点Q的运动时间为t(秒),△OPQ的面积为S,求出S与t之间的函数关系式;
(3)当S=时,求出点P的坐标,并直接写出以点O、P、Q为顶点的平行四边形的第四个顶点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,在平面直角坐标系中,Rt△PBD的斜边PB落在y轴上,tan∠BPD=.延长BD交x轴于点C,过点D作DA⊥x轴,垂足为A,OA=4,OB=3.
(1)求点C的坐标;
(2)若点D在反比例函数y=(k>0)的图象上,求反比例函数的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,直线y=mx与双曲线y=相交于A、B两点,A点的坐标为(1,2)
(1)求反比例函数的表达式;
(2)根据图象直接写出当mx>时,x的取值范围;
(3)计算线段AB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
快、慢两车分别从相距360千米路程的甲、乙两地同时出发,匀速行驶,先相向而行,快车到达乙地后,停留1小时,然后按原路原速返回,快车比慢车晚1小时到达甲地,快、慢两车距各自出发地的路程y(千米)与出发后所用的时间x(小时)的关系如图所示.
请结合图象信息解答下列问题:
(1)慢车的速度是 千米/小时,快车的速度是 千米/小时;
(2)求m的值,并指出点C的实际意义是什么?
(3)在快车按原路原速返回的过程中,快、慢两车相距的路程为150千米时,慢车行驶了多少小时?
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
已知:如图,反比例函数与一次函数的图象交于A(3,1)、B(m,-3)两点.
(1)求反比例函数与一次函数的解析式.
(2)若点P是直线上一点,且OP=OA,请直接写出点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com