精英家教网 > 初中数学 > 题目详情

【题目】如图,以AD为直径的半圆O经过RtABC斜边AB的两个端点,交直角边AC于点EBE是半圆弧的三等分点,弧AB的长为,则图中阴影部分的面积为(  )

A. 6 B. 9 C. D. 6

【答案】C

【解析】

首先根据圆周角定理得出扇形半径以及圆周角度数,进而利用锐角三角函数关系得出BCAC的长,利用SABC-S扇形BOE=图中阴影部分的面积求出即可.

解:连接BDBEBOEO


BE是半圆弧的三等分点,
∴∠EOA=EOB=BOD=60°,
∴∠BAC=EBA=30°,
BEAD

AB的长为

=

解得:R=2
AB=ADcos30°=2
BC=AB=
AC===3,

SABC=×BC×AC=××3=
∵△BOE和△ABE同底等高,
∴△BOE和△ABE面积相等,
∴图中阴影部分的面积为:SABC-S扇形BOE=-= -.

故选:C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,ABC内接于O,B=60°,CD是O的直径,点P是CD延长线上的一点,且AP=AC.

(1)求证:PA是O的切线;

(2)若AB=4+,BC=2,求O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以x=1为对称轴的抛物线y=ax2+bx+c的图象与x轴交于点A,点B(﹣10),与y轴交于点C04),作直线AC

1)求抛物线解析式;

2)点P在抛物线的对称轴上,且到直线ACx轴的距离相等,设点P的纵坐标为m,求m的值;

3)点My轴上且位于点C上方,点N在直线AC上,点Q为第一象限内抛物线上一点,若以点CMNQ为顶点的四边形是菱形,请直接写出点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)计算:(2ab)2+a2(a+2b)(a2b)+a8÷a2

(2)解方程:

(3)先化简,再求值:÷,其中x=﹣

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是小明设计用手电筒来测量某古城墙高度的示意图.在地面上点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知ABBDCDBD,且测得AB1.2米,BP1.8米,PD18米,那么该古城墙的高度是(  )

A. 6 B. 8 C. 12 D. 24

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连结AC交⊙O于点F

1ABAC的大小有什么关系?请说明理由;

2)若AB=8,∠BAC=45°,求:图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在第一象限内作射线OC,与x轴的夹角为30°,在射线OC上取点A,过点AAHx轴于点H.在抛物线y=x2(x>0)上取点P,在y轴上取点Q,使得以POQ为顶点,且以点Q为直角顶点的三角形与△AOH全等,则符合条件的点A的坐标是__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明开着汽车在平坦的公路上行驶,前放出现两座建筑物AB(如图),在(1)处小颖能看到B建筑物的一部分,(如图),此时,小明的视角为30°,已知A建筑物高25米.

1)请问汽车行驶到什么位置时,小明刚好看不到建筑物B?请在图中标出这点.

2)若小明刚好看不到B建筑物时,他的视线与公路的夹角为45°,请问他向前行驶了多少米?( 精确到0.1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=﹣x2+bx+c与一直线相交于A10)、C(﹣23)两点,与y轴交于点N,其顶点为D

1)求抛物线及直线AC的函数关系式;

2)若P是抛物线上位于直线AC上方的一个动点,求APC的面积的最大值及此时点P的坐标;

3)在对称轴上是否存在一点M,使ANM的周长最小.若存在,请求出M点的坐标和ANM周长的最小值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案