4£®ÎÒÃÇÖªµÀ£¬£¨$\sqrt{2}$£©2=2£¬£¨4+$\sqrt{3}$£©£¨4-$\sqrt{3}$£©=42-£¨$\sqrt{3}$£©2=13¡­Èç¹ûÁ½¸öº¬Óжþ´Î¸ùʽµÄ·ÇÁã´úÊýʽÏà³Ë£¬ËüÃǵĻý²»º¬Óжþ´Î¸ùʽ£¬¾Í˵ÕâÁ½¸ö·ÇÁã´úÊýʽ»¥ÎªÓÐÀí»¯Òòʽ£®Èç4+$\sqrt{3}$Óë4-$\sqrt{3}$»¥ÎªÓÐÀí»¯Òòʽ£¬$\sqrt{5}$+$\sqrt{2}$Óë$\sqrt{5}$-$\sqrt{2}$»¥ÎªÓÐÀí»¯Òòʽ£®
ÀûÓÃÕâÖÖ·½·¨£¬¿ÉÒÔ½«·ÖĸÖк¬Óжþ´Î¸ùʽµÄ´úÊýʽ»¯Îª·ÖĸÊÇÓÐÀíÊýµÄ´úÊýʽ£¬Õâ¸ö¹ý³Ì³ÆΪ·ÖĸÓÐÀí»¯£®ÀýÈ磺$\frac{1}{\sqrt{2}}$=$\frac{\sqrt{2}}{\sqrt{2}¡Á\sqrt{2}}$=$\frac{\sqrt{2}}{2}$£¬
$\frac{1}{\sqrt{3}-2}$=$\frac{\sqrt{3}+2}{£¨\sqrt{3}-2£©£¨\sqrt{3}+2£©}$=$\frac{\sqrt{3}+2}{£¨\sqrt{3}£©^{2}-{2}^{2}}$=$\frac{\sqrt{3}+2}{-1}$=-$\sqrt{3}$-2
£¨1£©$\frac{5}{\sqrt{3}}$·ÖĸÓÐÀí»¯µÄ½á¹ûÊÇ$\frac{5\sqrt{3}}{3}$£»
£¨2£©$\frac{1}{\sqrt{6}+\sqrt{7}}$·ÖĸÓÐÀí»¯µÄ½á¹ûÊÇ$\sqrt{7}$-$\sqrt{6}$£»
£¨3£©$\frac{1}{\sqrt{n}+\sqrt{n+1}}$·ÖĸÓÐÀí»¯µÄ½á¹ûÊÇ$\sqrt{n+1}$-$\sqrt{n}$£»
£¨4£©ÀûÓÃÒÔÉÏ֪ʶ¼ÆË㣺$\frac{1}{1+\sqrt{2}}$+$\frac{1}{\sqrt{2}+\sqrt{3}}$+$\frac{1}{\sqrt{3}+\sqrt{4}}$+¡­+$\frac{1}{\sqrt{2015}+\sqrt{2016}}$£®

·ÖÎö £¨1£©£¨2£©£¨3£©¸ù¾Ý·ÖĸÓÐÀí»¯³£³£Êdz˶þ´Î¸ùʽ±¾Éí£¨·ÖĸֻÓÐÒ»Ï»òÓëÔ­·Öĸ×é³Éƽ·½²î¹«Ê½£¬ÒÀ´Ë¼ÆËã½â´ð³ö¼´¿É£»
£¨4£©ÏȶÔÿ¸ö·Öʽ·ÖĸÓÐÀí»¯£¬È»ºóÔÙÏà¼Ó¼õ£®

½â´ð ½â£º£¨1£©$\frac{5}{\sqrt{3}}$·ÖĸÓÐÀí»¯µÄ½á¹ûÊÇ$\frac{5\sqrt{3}}{3}$£»
£¨2£©$\frac{1}{\sqrt{6}+\sqrt{7}}$·ÖĸÓÐÀí»¯µÄ½á¹ûÊÇ$\sqrt{7}$-$\sqrt{6}$£»
£¨3£©$\frac{1}{\sqrt{n}+\sqrt{n+1}}$·ÖĸÓÐÀí»¯µÄ½á¹ûÊÇ$\sqrt{n+1}$-$\sqrt{n}$£»
£¨4£©$\frac{1}{1+\sqrt{2}}$+$\frac{1}{\sqrt{2}+\sqrt{3}}$+$\frac{1}{\sqrt{3}+\sqrt{4}}$+¡­+$\frac{1}{\sqrt{2015}+\sqrt{2016}}$
=$\sqrt{2}$-1+$\sqrt{3}$-$\sqrt{2}$+$\sqrt{4}$-$\sqrt{3}$+¡­+$\sqrt{2016}$-$\sqrt{2015}$
=-1+12$\sqrt{14}$£®
¹Ê´ð°¸Îª£º$\frac{5\sqrt{3}}{3}$£»$\sqrt{7}$-$\sqrt{6}$£»$\sqrt{n+1}$-$\sqrt{n}$£®

µãÆÀ ±¾Ì⿼²éÁË·ÖĸÓÐÀí»¯£¬Á½¸öº¬¶þ´Î¸ùʽµÄ´úÊýʽÏà³Ëʱ£¬ËüÃǵĻý²»º¬¶þ´Î¸ùʽ£¬ÕâÑùµÄÁ½¸ö´úÊýʽ³É»¥ÎªÓÐÀí»¯Òòʽ£»Ò»¸ö¶þ´Î¸ùʽµÄÓÐÀí»¯Òòʽ²»Ö¹Ò»¸ö£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬Ò»´Îº¯Êýy=ax+b£¨a£¬bÊdz£Êý£¬ÇÒa¡Ù0£©µÄͼÏóÓë·´±ÈÀýº¯Êý$y=\frac{k}{x}$£¨kÊdz£Êý£¬ÇÒk¡Ù0£©µÄͼÏó½»ÓÚÒ»¡¢ÈýÏóÏÞÄÚµÄA£¬BÁ½µã£¬ÓëxÖá½»ÓÚµãC£¬µãAµÄ×ø±êΪ£¨2£¬m£©£¬µãBµÄ×ø±êΪ£¨n£¬-2£©£¬tan¡ÏBOC=$\frac{2}{5}$£®
£¨1£©ÇóµãBµÄ×ø±ê¼°·´±ÈÀýº¯ÊýºÍÒ»´Îº¯ÊýµÄ±í´ïʽ£»
£¨2£©½«Ö±ÏßABÑØyÖáÏòÏÂƽÒÆ6¸öµ¥Î»³¤¶Èºó£¬·Ö±ðÓëË«ÇúÏß½»ÓÚE£¬FÁ½µã£¬Á¬½áOE£¬OF£¬Çó¡÷EOFµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®½âÏÂÁз½³Ì£º
£¨1£©4-£¨2x-1£©=3£¨3-x£©      
£¨2£©3-$\frac{x-2}{2}$=3x-3
£¨3£©$\frac{x}{7}$-$\frac{1-2x}{3}$=1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®Ä³ÖÖÉÌÆ·½ø»õºó£¬ÁãÊÛ¼Û¶¨ÎªÃ¿¼þ900Ôª£¬ÎªÁËÊÊÓ¦Êг¡¾ºÕù£¬É̵갴ÁãÊۼ۵ľÅÕÛ½µ¼Û£¬²¢ÈÃÀû40ÔªÏúÊÛ£¬ÈÔ¿É»ñÀû25%£¬ÎÊÕâÖÖÉÌÆ·µÄ½ø¼ÛΪ¶àÉÙÔª£¿£¨¡¡¡¡£©
A£®610B£®616C£®648D£®680

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÔÚƽÒƹý³ÌÖУ¬¶ÔÓ¦Ï߶Σ¨¡¡¡¡£©
A£®»¥ÏàƽÐÐÇÒÏàµÈB£®»¥Ïà´¹Ö±ÇÒÏàµÈ
C£®»¥ÏàƽÐУ¨»òÔÚͬһÌõÖ±ÏßÉÏ£©ÇÒÏàµÈD£®»¥ÏàƽÐÐ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬¡ÏACB=90¡ã£¬BEƽ·Ö¡ÏABC£¬DE¡ÍABÓÚµãD£¬Èç¹ûAC=3cm£¬ÄÇôAE+DEµÈÓÚ£¨¡¡¡¡£©
A£®2cmB£®3cmC£®4cmD£®5cm

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®¡÷ABCÖУ¬¡ÏC=90¡ã£¬CD¡ÍABÓÚD£¬ÔòsinB=£¨¡¡¡¡£©
A£®$\frac{CD}{AB}$B£®$\frac{AC}{BC}$C£®$\frac{BC}{AB}$D£®$\frac{AC}{AB}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®¼ÆË㣺-a4•£¨-a£©2=-a6£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÏÂÁÐͼÐÎÖУ¬²»ÊÇÖÐÐĶԳÆͼÐεÄÊÇ£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸