精英家教网 > 初中数学 > 题目详情
(2013•黄陂区模拟)正△ABC的两边上的点M,N满足BM=AN,BN交于CN于点E
(1)求证:BM2=ME•MC;
(2)△BCE沿着BC向下翻折到△BCF,延长CF和BF交AB于P,交AC于K,若正△ABC边长是10,求BP•CK的值;
(3)当E为BN的中点时,
BM
MA
=
5
-1
2
5
-1
2
(直接写出比值)
分析:(1)首先证明△ABN≌△BCM,得出∠ABN=∠BCM,进一步证明△BEM∽△CBM,问题得证;
(2)利用折叠,得出∠NBC=∠KBC,∠MCB=∠PCB,进一步证得△PCB∽△BCK,得出BP•CK的值即可买;
(3)由△BME∽△BCM,得出
BM
MC
=
BE
EC
,△CNE∽△CAM,得出
CN
MC
=
NE
AM
,E为BN的中点,则BE=NE,把两个比例式相除,得出
BM
CN
=
AM
BC
,结合BM=AN求出BM的长度,求出AM的长度,求得比值即可.
解答:(1)证明:如图,

在△ABN和△BCM中,
AB=BC
∠A=∠CBM=60°
AN=BM

∴△ABN≌△BCM(SAS),
∴∠ABN=∠BCM,
又∵∠BME=∠CMB,
∴△BEM∽△CBM,
BM
ME
=
MC
BM

即BM2=ME•MC;

 (2)解:如图,

△BCE沿着BC向下翻折到△BCF,
∴∠NBC=∠KBC,∠MCB=∠PCB,
又∵∠ABN=∠BCM,
∴∠ABN=∠BCM=∠PCB,
∠ABN+∠NBC=60°,∠PCB+∠BPC=60°
∴∠BPC=∠NBC=∠KBC,
∴△PCB∽△BCK,
PB
BC
=
BC
CK
,BC=10,
即BP•CK=10×10=100;

(3)由△BME∽△BCM,
BM
MC
=
BE
BC
,①
同理△CNE∽△CAM,
CN
MC
=
NE
AM
,②
又∵E为BN的中点,则BE=NE,
①②相除得,
BM
CN
=
AM
BC

BM
10-BM
=
10-BM
10

解得BM=15+5
5
(不合题意,舍去),或15-5
5

则AM=10-BM=5
5
-5,
BM
AM
=
5
-1
2
点评:此题考查三角形全等的判定与性质,三角形相似的判定与性质,翻折等知识点,是比较综合的题目.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•黄陂区模拟)用配方法求y=x2-2x-3的顶点坐标,变形正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•黄陂区模拟)从4、5、6三个数中,任取两个不同的数字组成一个两位数,能被3整除的概率是
1
3
1
3

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•黄陂区模拟)已知⊙O1的半径是13,⊙O2的半径是15,⊙O1和⊙O2交于A、B两点.AB=24,则O1O2的长度是
4或14
4或14

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•黄陂区模拟)已知:抛物线y=x2+mx+n的顶点D(1,-4)抛物线与坐标轴的交点为A,B,C,
(1)求抛物线的解析式,并求出A,B,C,的坐标;
(2)作如图所示四个顶点在△ABC三边上的矩形EFGH.求矩形EFGH的最大面积;
(3)MN=
2
,MN是直线y=-x上的一条动线段,当四边形AMNC的周长最小时,求N的坐标.

查看答案和解析>>

同步练习册答案