精英家教网 > 初中数学 > 题目详情

【题目】为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.
(1)改扩建1所A类学校和1所B类学校所需资金分别是多少万元?
(2)该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?

【答案】
(1)解:设改扩建一所A类和一所B类学校所需资金分别为x万元和y万元

由题意得 ,解得

答:改扩建一所A类学校和一所B类学校所需资金分别为1200万元和1800万元.


(2)解:设今年改扩建A类学校a所,则改扩建B类学校(10﹣a)所,

由题意得: ,解得

∴3≤a≤5,

∵x取整数,

∴x=3,4,5.

即共有3种方案:

方案一:改扩建A类学校3所,B类学校7所;

方案二:改扩建A类学校4所,B类学校6所;

方案三:改扩建A类学校5所,B类学校5所.


【解析】(1)可根据“改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元”,列出方程组求出答案;(2)要根据“国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元”来列出不等式组,判断出不同的改造方案.
【考点精析】解答此题的关键在于理解一元一次不等式组的应用的相关知识,掌握1、审:分析题意,找出不等关系;2、设:设未知数;3、列:列出不等式组;4、解:解不等式组;5、检验:从不等式组的解集中找出符合题意的答案;6、答:写出问题答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】矩形ABCD中,E、F分别是AD、BC的中点,CE、AF分别交BD于G、H两点.

求证:
(1)四边形AFCE是平行四边形;
(2)证明:EG=FH.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解:如图1,⊙O与直线a、b都相切,不论⊙O如何转动,直线a、b之间的距离始终保持不变(等于⊙O的直径),我们把具有这一特性的图形成为“等宽曲线”,图2是利用圆的这一特性的例子,将等直径的圆棍放在物体下面,通过圆棍滚动,用较小的力既可以推动物体前进,据说,古埃及人就是利用这样的方法将巨石推到金字塔顶的. 拓展应用:如图3所示的弧三角形(也称为莱洛三角形)也是“等宽曲线”,如图4,夹在平行线c,d之间的莱洛三角形无论怎么滚动,平行线间的距离始终不变,若直线c,d之间的距离等于2cm,则莱洛三角形的周长为cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】青岛市某大酒店豪华间实行淡季、旺季两种价格标准,旺季每间价格比淡季上涨 .下表是去年该酒店豪华间某两天的相关记录:

淡季

旺季

未入住房间数

10

0

日总收入(元)

24000

40000


(1)该酒店豪华间有多少间?旺季每间价格为多少元?
(2)今年旺季来临,豪华间的间数不变.经市场调查发现,如果豪华间仍旧实行去年旺季价格,那么每天都客满;如果价格继续上涨,那么每增加25元,每天未入住房间数增加1间.不考虑其他因素,该酒店将豪华间的价格上涨多少元时,豪华间的日总收入最高?最高日总收入是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线l:y= x﹣ 与x轴交于点B1 , 以OB1为边长作等边三角形A1OB1 , 过点A1作A1B2平行于x轴,交直线l于点B2 , 以A1B2为边长作等边三角形A2A1B2 , 过点A2作A2B3平行于x轴,交直线l于点B3 , 以A2B3为边长作等边三角形A3A2B3 , …,则点A2017的横坐标是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将平行四边形ABCD沿对角线BD折叠,使点A落在点A'处.若∠1=∠2=50°,则∠A'为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2017宁夏)在边长为2的等边三角形ABC中,P是BC边上任意一点,过点 P分别作 PM⊥A B,PN⊥AC,M、N分别为垂足.
(1)求证:不论点P在BC边的何处时都有PM+PN的长恰好等于三角形ABC一边上的高;
(2)当BP的长为何值时,四边形AMPN的面积最大,并求出最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线的解析式为y=﹣ x2+bx+5.
(1)当自变量 x≥2时,函数值y 随 x的增大而减少,求b 的取值范围;
(2)如图,若抛物线的图象经过点A(2,5),与x 轴交于点C,抛物线的对称轴与x 轴交于B.

①求抛物线的解析式;
②在抛物线上是否存在点P,使得∠PAB=∠ABC?若存在,求出点P 的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+4与x轴交于A(﹣2,0)、B(4、0)两点,与y轴交于C点.

(1)求抛物线的解析式;
(2)T是抛物线对称轴上的一点,且△ATC是以AC为底的等腰三角形,求点T的坐标;
(3)M、Q两点分别从A、B点以每秒1个单位长度的速度沿x轴同时出发相向而行,当点M到原点时,点Q立刻掉头并以每秒 个单位长度的速度向点B方向移动,当点M到达抛物线的对称轴时,两点停止运动,过点M的直线l⊥x轴交AC或BC于点P.求点M的运动时间t与△APQ面积S的函数关系式,并求出S的最大值.

查看答案和解析>>

同步练习册答案