精英家教网 > 初中数学 > 题目详情

【题目】如图1,我们把对角线互相垂直的四边形叫做垂美四边形.

(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由.

(2)性质探究:试探索垂美四边形ABCD两组对边AB,CD与BC,AD之间的数量关系.
猜想结论:(要求用文字语言叙述)
写出证明过程(先画出图形,写出已知、求证).
(3)问题解决:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CE,BG,GE,已知AC=4,AB=5,求GE长.

【答案】
(1)

解:四边形ABCD是垂美四边形.

证明:∵AB=AD,

∴点A在线段BD的垂直平分线上,

∵CB=CD,

∴点C在线段BD的垂直平分线上,

∴直线AC是线段BD的垂直平分线,

∴AC⊥BD,即四边形ABCD是垂美四边形


(2)

解:猜想结论:垂美四边形的两组对边的平方和相等.

如图2,已知四边形ABCD中,AC⊥BD,垂足为E,

求证:AD2+BC2=AB2+CD2

证明:∵AC⊥BD,

∴∠AED=∠AEB=∠BEC=∠CED=90°,

由勾股定理得,AD2+BC2=AE2+DE2+BE2+CE2

AB2+CD2=AE2+BE2+CE2+DE2

∴AD2+BC2=AB2+CD2


(3)

解:连接CG、BE,

∵∠CAG=∠BAE=90°,

∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,

在△GAB和△CAE中,

∴△GAB≌△CAE,

∴∠ABG=∠AEC,又∠AEC+∠AME=90°,

∴∠ABG+∠AME=90°,即CE⊥BG,

∴四边形CGEB是垂美四边形,

由(2)得,CG2+BE2=CB2+GE2

∵AC=4,AB=5,

∴BC=3,CG=4 ,BE=5

∴GE2=CG2+BE2﹣CB2=73,

∴GE=


【解析】(1)根据垂直平分线的判定定理证明即可;(2)根据垂直的定义和勾股定理解答即可;(3)根据垂美四边形的性质、勾股定理、结合(2)的结论计算.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】三角形两边的长是3和4,第三边的长是方程 -12x+35=0的根,则该三角形的周长为(  )
A.14
B.12
C.12或14
D.以上都不对

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,DBC上一点,∠BAD=∠ABC,∠ADC=∠ACD,若∠BAC=63°,试求∠DAC、∠ADC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB=90°,A=40°,ABC的外角∠CBD的平分线BEAC的延长线于点E.

(1)求∠CBE的度数;

(2)过点DDFBE,交AC的延长线于点F,求∠F的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以直线AB上一点O为端点作射线OC,使∠BOC=70°,将一个直角三角形的直角顶点放在点O处.(注:∠DOE=90°)

(1)如图①,若直角三角板DOE的一边OD放在射线OB上,则∠COE=   °;

(2)如图②,将直角三角板DOE绕点O逆时针方向转动到某个位置,若OC恰好平分∠BOE,求∠COD的度数;

(3)如图③,将直角三角板DOE绕点O转动,如果OD始终在∠BOC的内部,试猜想∠BOD和∠COE有怎样的数量关系?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法正确的是( )
A.一个游戏的中奖概率是 ,则做10次这样的游戏一定会中奖
B.一组数据6,8,7,8,8,9,10的众数和中位数都是8
C.为了解全国中学生的心理健康情况,应该采用普查的方式
D.若甲组数据的方差S2=0.01,乙组数据的方差S2=0.1,则乙组数据比甲组数据稳定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合题。
(1)计算:﹣22+| ﹣4|+( 1+2tan60°.
(2)先化简,再求值:( )÷ ,其中x是不等式3x+7>1的负整数解.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线与x轴交于A(﹣1,0)、B(5,0)两点,与y轴交于点C(0,5).

(1)求该抛物线所对应的函数关系式;
(2)D是笫一象限内抛物线上的一个动点(与点C、B不重合),过点D作DF⊥x轴于点F,交直线BC于点E,连结BD、CD.设点D的横坐标为m,△BCD的面积为S.
①求S关于m的函数关系式及自变量m的取值范围;
②当m为何值时,S有最大值,并求这个最大值;
③直线BC能否把△BDF分成面积之比为2:3的两部分?若能,请求出点D的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,数轴上有A、B、C三个点,它们表示的数分别是

(1)填空:AB= ,BC=

(2)现有动点M、N都从A点出发,点M以每秒2个单位长度的速度向右移动,当点M移动到B点时,点N才从A点出发,并以每秒3个单位长度的速度向右移动,求点N移动多少时间,点N追上点M?

(3)若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和7个单位长度的速度向右运动。试探索:BC-AB的值是否随着时间的变化而改变?请说明理由。

查看答案和解析>>

同步练习册答案