【题目】如图,AB为⊙O的直径,点C为半圆上一点,AD平分∠CAB交⊙O于点D
(1)求证:OD∥AC;
(2)若AC=8,AB=10,求AD.
【答案】
(1)证明:∵AD平分∠CAB交⊙O于点D,
∴∠CAD=∠BAD,
∵OA=OD,
∴∠DAB=∠D,
∴∠CAD=∠D,
∴AC∥OD
(2)解:连接BC,BD,
∵AD平分∠CAB交⊙O于点D,
∴ = ,
∴CE=BE,
∵AB为⊙O的直径,
∴∠C=90°,
∴BC= =6,
∴CE=BE=3,
∴OE= =4,
∴DE=1,
∴BD= = ,
∴AD= =3 .
【解析】(1)由AD平分∠CAB交⊙O于点D,得到∠CAD=∠BAD,根据等腰三角形的性质得到∠DAB=∠D,等量代换得到∠CAD=∠D,根据平行线的判定定理即可得到结论;(2)连接BC,BD,根据圆周角定理得到∠C=90°,根据勾股定理即可得到结论.
【考点精析】本题主要考查了圆周角定理的相关知识点,需要掌握顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半才能正确解答此题.
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程kx2﹣4x+2=0有实数根.
(1)求k的取值范围;
(2)若△ABC中,AB=AC=2,AB,BC的长是方程kx2﹣4x+2=0的两根,求BC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=﹣x2+bx+c的部分图象如图所示,A(1,0),B(0,3).
(1)求抛物线的解析式;
(2)结合函数图象,写出当y<3时x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC的两条角平分线BD、CE交于O,且∠A=60°,则下列结论中不正确的是( )
A.∠BOC=120° B.BC=BE+CD C.OD=OE D.OB=OC
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线C1:y=﹣ x2+mx+m+ .
(1)①无论m取何值,抛物线经过定点P;
②随着m的取值变化,顶点M(x,y)随之变化,y是x的函数,则其函数C2关系式为;
(2)如图1,若该抛物线C1与x轴仅有一个公共点,请在图1中画出顶点M满足的函数C2的大致图象,平行于y轴的直线l分别交C1、C2于点A、B,若△PAB为等腰直角三角形,判断直线l满足的条件,并说明理由;
(3)如图2,抛物线C1的顶点M在第二象限,交x轴于另一点C,抛物线上点M与点P之间一点D的横坐标为﹣2,连接PD、CD、CM、DM,若S△PCD=S△MCD , 求二次函数的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列结论中正确的是( )
A. 三角形的一个外角大于这个三角形的任何一个内角
B. 三角形按边分类可以分为:不等边三角形、等腰三角形、等边三角形
C. 三角形的三个内角中,最多有一个钝角
D. 若三条线段、、,满足,则此三条线段一定能组成三角形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,C是 的中点,CE⊥AB于E,BD交CE于点F.
(1)求证:CF=BF;
(2)若CD=6,AC=8,求⊙O的半径.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com