【题目】如图,AB是⊙O的直径,C是 的中点,CE⊥AB于E,BD交CE于点F.
(1)求证:CF=BF;
(2)若CD=6,AC=8,求⊙O的半径.
【答案】
(1)证明:延长CE交⊙O于点P,
∵CE⊥AB,
∴ = ,
∴∠BCP=∠BDC,
∵C是 的中点,
∴CD=CB,
∴∠BDC=∠CBD,
∴∠CBD=∠BCP,
∴CF=BF
(2)解:∵AB是⊙O的直径,
∴∠ACB=90°,
∵CD=6,AC=8,
∴BC=6,
在Rt△ABC中,AB= =10,
∴⊙O的半径为5.
【解析】(1)首先延长CE交⊙O于点P,由垂径定理可证得∠BCP=∠BDC,又由C是 的中点,易证得∠BDC=∠CBD,继而可证得CF=BF;(2)由AB是⊙O的直径,根据直径所对的圆周角是直角,可得∠ACB=90°,然后由勾股定理求得AB的长,继而求得答案.
【考点精析】解答此题的关键在于理解勾股定理的概念的相关知识,掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2,以及对圆心角、弧、弦的关系的理解,了解在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等;在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
科目:初中数学 来源: 题型:
【题目】一幅长20cm、宽12cm的图案,如图,其中有一横两竖的彩条,横、竖彩条的宽度比为3:2.设竖彩条的宽度为xcm,图案中三条彩条所占面积为ycm2 .
(1)求y与x之间的函数关系式;
(2)若图案中三条彩条所占面积是图案面积的 ,求横、竖彩条的宽度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法中错误的是( )
A. 在△ABC中,∠C=∠A-∠B,则△ABC为直角三角形
B. 在△ABC中,若∠A∶∠B∶∠C=5∶2∶3,则△ABC为直角三角形
C. 在△ABC中,若a=c,b=c,则△ABC为直角三角形
D. 在△ABC中,若a∶b∶c=2∶2∶4,则△ABC为直角三角形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】两条平行直线上各有个点,用这个点按如下规则连接线段:
①平行线之间的点在连线段时,可以有共同的端点,但不能有其它交点;
②符合①要求的线段必须全部画出.
图展示了当时的情况,此时图中三角形的个数为;图展示了当时的一种情况,此时图中三角形的个数为.试回答下列问题:
当时,请在图中画出使三角形个数最少的图形,此时图中三角形的个数是________;
试猜想当有对点时,按上述规则画出的图形中,最少有________个三角形;
当时,按上述规则画出的图形中,最少有________个三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,平面直角坐标系中,△ABC的边AB在x轴上,∠C=60°,AC交y轴于点E,AC,BC的长是方程x2﹣16x+64=0的两个根且OA:OB=1:3,请解答下列问题:
(1)求点C的坐标;
(2)求直线EB的解析式;
(3)在x轴上是否存在点P,使△BEP为等腰三角形?若存在,请直接写出点P的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图①,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.
(2)如图②,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com