【题目】下列说法中错误的是( )
A. 在△ABC中,∠C=∠A-∠B,则△ABC为直角三角形
B. 在△ABC中,若∠A∶∠B∶∠C=5∶2∶3,则△ABC为直角三角形
C. 在△ABC中,若a=c,b=c,则△ABC为直角三角形
D. 在△ABC中,若a∶b∶c=2∶2∶4,则△ABC为直角三角形
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AD是BC边上的高,AE是∠BAC平分线.
(1)若∠B=38°,∠C=70°,求∠DAE的度数;
(2)若∠B>∠C,试探求∠DAE、∠B、∠C之间的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=﹣x2+bx+c的部分图象如图所示,A(1,0),B(0,3).
(1)求抛物线的解析式;
(2)结合函数图象,写出当y<3时x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线C1:y=﹣ x2+mx+m+ .
(1)①无论m取何值,抛物线经过定点P;
②随着m的取值变化,顶点M(x,y)随之变化,y是x的函数,则其函数C2关系式为;
(2)如图1,若该抛物线C1与x轴仅有一个公共点,请在图1中画出顶点M满足的函数C2的大致图象,平行于y轴的直线l分别交C1、C2于点A、B,若△PAB为等腰直角三角形,判断直线l满足的条件,并说明理由;
(3)如图2,抛物线C1的顶点M在第二象限,交x轴于另一点C,抛物线上点M与点P之间一点D的横坐标为﹣2,连接PD、CD、CM、DM,若S△PCD=S△MCD , 求二次函数的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列结论中正确的是( )
A. 三角形的一个外角大于这个三角形的任何一个内角
B. 三角形按边分类可以分为:不等边三角形、等腰三角形、等边三角形
C. 三角形的三个内角中,最多有一个钝角
D. 若三条线段、、,满足,则此三条线段一定能组成三角形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+2ax+c的图象与x轴交于A、B两点(点A在点B的左边)AB=4,与y轴交于点C,OC=OA,点D为抛物线的顶点.
(1)求抛物线的解析式;
(2)点M(m,0)为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N,可得矩形PQNM,如图1,点P在点Q左边,当矩形PQNM的周长最大时,求m的值,并求出此时的△AEM的面积;
(3)已知H(0,﹣1),点G在抛物线上,连HG,直线HG⊥CF,垂足为F,若BF=BC,求点G的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,C是 的中点,CE⊥AB于E,BD交CE于点F.
(1)求证:CF=BF;
(2)若CD=6,AC=8,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校计划购买篮球、排球共20个,购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同。
(1)篮球和排球的单价各是多少元?
(2)若购买篮球不少于8个,所需费用总额不超过800元.请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将边长为6的正三角形纸片按如下顺序进行两次折叠,展开后,得折痕(如图①),为其交点.
(1)探求与的数量关系,并说明理由;
(2)如图②,若分别为上的动点.
①当的长度取得最小值时,求的长度;
②如图③,若点在线段上,,则的最小值为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com