精英家教网 > 初中数学 > 题目详情

【题目】第二十四届冬季奥林匹克运动会将于2022年在北京市和张家口市举行.为了调查学生对冬奥知识的了解情况,从甲、乙两校各随机抽取20名学生进行了相关知识测试,获得了他们的成绩(百分制),并对数据(成绩)进行了整理、描述和分析.下面给出了部分信息.

a.甲校20名学生成绩的频数分布表和频数分布直方图如图:

甲校学生样本成绩频数分布表(表1

成绩m(分)

频数(人数)

频率

50≤m60

a

0.05

60≤m70

b

c

70≤m80

3

0.15

80≤m90

8

0.40

90≤m100

6

0.30

合计

20

1.0

b.甲校成绩在80≤m90的这一组的具体成绩是:

87 88 88 88 89 89 89 89

c.甲、乙两校成绩的平均分、中位数、众数、方差如表所示(表2):

学校

平均分

中位数

众数

方差

84

n

89

129.7

84.2

85

85

138.6

根据以如图表提供的信息,解答下列问题:

1)表1a   ;表2中的中位数n   

2)补全图1甲校学生样本成绩频数分布直方图;

3)在此次测试中,某学生的成绩是87分,在他所属学校排在前10名,由表中数据可知该学生是   校的学生(填),理由是   

4)假设甲校200名学生都参加此次测试,若成绩80分及以上为优秀,估计成绩优秀的学生人数为   

【答案】1188.5;(2)图见解析;(3)乙,乙的中位数是858785;(4140

【解析】

1)根据频数分布表和频数分布直方图的信息列式计算即可得到a的值,根据中位数的定义求解可得n的值;

2)根据题意补全频数分布直方图即可;

3)根据甲这名学生的成绩为87分,小于甲校样本数据的中位数88.5分,大于乙校样本数据的中位数85分可得;

4)利用样本估计总体思想求解可得.

解:(1a=20×0.051

由频数分布表和频数分布直方图中的信息可知,排在中间的两个数是8889

n88.5

故答案为:188.5

2b2013862

补全图1甲校学生样本成绩频数分布直方图如图所示;

3)在此次测试中,某学生的成绩是87分,在他所属学校排在前10名,由表中数据可知该学生是乙校的学生,

理由:乙的中位数是858785

故答案为:乙,乙的中位数是858785

4200×140

答:成绩优秀的学生人数为140人.

故答案为:140人.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】《九章算术》中有这样一个问题:今有五雀、六燕,集称之衡,雀俱重,燕俱轻.一雀一燕交而处,衡适平.并燕、雀重一斤.问燕、雀一枚各重几何?其大意如下:今有5只雀、6只燕,分别放一起用衡器称,聚在一起的雀重,燕轻.将1只雀、1只燕交换位置放,两边重量相等.5只雀、6只燕重量为1(注:声代1=16).问每只雀、燕各重多少两?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC内接于O,且AB为O的直径,ODAB,与AC交于点E,与过点C的O的切线交于点D.

(1)若AC=4,BC=2,求OE的长.

(2)试判断A与CDE的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数yaxbx4(ab是常数.a0)的图象过点(3,-1).

(1)试判断点(222a)是否也在该函数的图象上,并说明理由.

(2)若该二次函数的图象与x轴只有一个交点,求该函数表达式.

(3)已知二次函数的图像过()()两点,且当时,始终都有,求a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃停止加热,水温开始下降,此时水温)与开机后用时)成反比例关系,直至水温降至30℃,饮水机关机,饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时接通电源,水温)与时间)的关系如图所示:

1)分别写出水温上升和下降阶段之间的函数关系式;

2)怡萱同学想喝高于50℃的水,请问她最多需要等待多长时间?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB与⊙O相切于点COAOB分别交⊙O于点DE、弧CD=弧CE

(1)求证:∠A=∠B.

(2)已知AC2OA4,求阴影部分的面积.(结果保留根号和π)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】

如图所示,小吴和小黄在玩转盘游戏,准备了两个可以自由转动的转盘甲、乙,每个转盘被分成面积相等的几个扇形区域,并在每个扇形区域内标上数字,游戏规则:同时转动两个转盘,当转盘停止转动后,指针所指扇形区域内的数字之和为456时,则小吴胜;否则小黄胜.(如果指针恰好指在分割线上,那么重转一次,直到指针指向某一扇形区域为止)

1)这个游戏规则对双方公平吗?说说你的理由;

2)请你设计一个对双方都公平的游戏规则.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,,点内的一个动点,过点,使得,分别交于点.

1)求证:

2)连接,若,试求的值;

3)记,若,且为整数,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知抛物线轴交于两点,与轴交于点,其顶点为点,点的坐标为(0,-1),该抛物线与交于另一点,连接.

1)求该抛物线的解析式,并用配方法把解析式化为的形式;

2)若点上,连接,求的面积;

3)一动点从点出发,以每秒1个单位的速度沿平行于轴方向向上运动,连接,设运动时间为秒(>0),在点的运动过程中,当为何值时,

查看答案和解析>>

同步练习册答案