精英家教网 > 初中数学 > 题目详情

【题目】已知二次函数yaxbx4(ab是常数.a0)的图象过点(3,-1).

(1)试判断点(222a)是否也在该函数的图象上,并说明理由.

(2)若该二次函数的图象与x轴只有一个交点,求该函数表达式.

(3)已知二次函数的图像过()()两点,且当时,始终都有,求a的取值范围.

【答案】1)不在;(2;(3

【解析】

1)将点代入函数解析式,求出ab的等式,将函数解析式改写成只含有a的形式,再将点代入验证即可;

2)令,得到一个一元二次方程,由题意此方程只有一个实数根,由根的判别式即可求出a的值,从而可得函数表达式;

3)根据函数解析式求出其对称轴,再根据函数图象的增减性判断即可.

1二次函数图像过点

代入得

,代入得

代入得,得,不成立,所以点不在该函数图像上;

2)由(1)知,

x轴只有一个交点

只有一个实数根

时,,所以表达式为:

时,,所以表达式为:

3

对称轴为

时,函数图象如下:

若要满足时,恒大于,则均在对称轴左侧

时,函数图象如下:

,此时必小于

综上,所求的a的取值范围是:.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某商场将进货价为30元的台灯以40元的价格售出,平均每月能售出600个,经调查表明,这种台灯的售价每上涨1元,其销量就减少10个,市场规定此台灯售价不得超过60元,为了实现销售这种台灯平均每月10000元的销售利润,售价应定为多少元?这时售出台灯多少个?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,∠C=Rt∠,AC=3BC=4,以点C为圆心,CA为半径的圆与ABBC分别交于点ED,则AE的长为( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程有两个实数根x1x2

1)求实数k的取值范围;

2)是否存在实数k使得成立?若存在,请求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线y=mx2﹣2mx﹣3m≠0)与x轴交于A30),B两点.

1)求抛物线的表达式及点B的坐标;

2)当﹣2x3时的函数图象记为G,求此时函数y的取值范围;

3)在(2)的条件下,将图象Gx轴上方的部分沿x轴翻折,图象G的其余部分保持不变,得到一个新图象M.若经过点C4.2)的直线y=kx+bk≠0)与图象M在第三象限内有两个公共点,结合图象求b的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校为了解学生“第二课堂“活动的选修情况,对报名参加A.跆拳道,B.声乐,C.足球,D.古典舞这四项选修活动的学生(每人必选且只能选修一项)进行抽样调查.并根据收集的数据绘制了图和图两幅不完整的统计图.

根据图中提供的信息,解答下列问题:

1)本次调查的学生共有  人;在扇形统计图中,B所对应的扇形的圆心角的度数是   

2)将条形统计图补充完整;

3)在被调查选修古典舞的学生中有4名团员,其中有1名男生和3名女生,学校想从这4人中任选2人进行古典舞表演.请用列表或画树状图的方法求被选中的2人恰好是11女的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】第二十四届冬季奥林匹克运动会将于2022年在北京市和张家口市举行.为了调查学生对冬奥知识的了解情况,从甲、乙两校各随机抽取20名学生进行了相关知识测试,获得了他们的成绩(百分制),并对数据(成绩)进行了整理、描述和分析.下面给出了部分信息.

a.甲校20名学生成绩的频数分布表和频数分布直方图如图:

甲校学生样本成绩频数分布表(表1

成绩m(分)

频数(人数)

频率

50≤m60

a

0.05

60≤m70

b

c

70≤m80

3

0.15

80≤m90

8

0.40

90≤m100

6

0.30

合计

20

1.0

b.甲校成绩在80≤m90的这一组的具体成绩是:

87 88 88 88 89 89 89 89

c.甲、乙两校成绩的平均分、中位数、众数、方差如表所示(表2):

学校

平均分

中位数

众数

方差

84

n

89

129.7

84.2

85

85

138.6

根据以如图表提供的信息,解答下列问题:

1)表1a   ;表2中的中位数n   

2)补全图1甲校学生样本成绩频数分布直方图;

3)在此次测试中,某学生的成绩是87分,在他所属学校排在前10名,由表中数据可知该学生是   校的学生(填),理由是   

4)假设甲校200名学生都参加此次测试,若成绩80分及以上为优秀,估计成绩优秀的学生人数为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,点D是等腰直角ABC的重心,其中ACB=90°,将线段CD绕点C逆时针旋转90°得到线段CE,连结DE,若ABC的周长为6,则DCE的周长为(  )

A. 2 B. 2 C. 4 D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了弘扬中华优秀传统文化,用好汉字,某中学开展了一次古诗词知识竞赛,赛程共分预赛、复赛和决赛三个阶段,预赛由各班举行,全员参加,按统一标准评分,统计成绩后绘制成如图1和图2所示的两幅不完整预赛成绩条形统计图预赛成绩扇形统计图,预赛前10名选手参加复赛,成绩见10名选手成绩统计表(采用百分制记分,得分都为60分以上的整数).

10名选手成绩统计表

序号

预赛成绩(分)

100

92

95

98

94

100

93

96

95

96

复赛成绩(分)

90

80

85

90

80

88

85

90

86

89

总成绩(分)

94

84.8

89

85.6

92.8

88.2

89.6

91.8

1)求该中学学生的总人数,并将图1补充完整;

2)在图2中,求“90.5100.5分数段人数的圆心角度数;

3)预赛前10名选手参加复赛,成绩见10名选手成绩统计表,若按预赛成绩占40%,复赛成绩占60%的比例计算总成绩,并从中选出3人参加决赛,你认为选哪几号选手去参加决赛,并说明理由.

查看答案和解析>>

同步练习册答案