分析 如图,由等边三角形的性质可以得出∠A=∠B=∠C=60°,由三个筝形全等就可以得出AD=BE=BF=CG=CH=AK,根据折叠后是一个三棱柱就可以得出DO=PE=PF=QG=QH=OK,四边形ODEP、四边形PFGQ、四边形QHKO为矩形,且全等.连结AO证明△AOD≌△AOK就可以得出∠OAD=∠OAK=30°,设OD=x,则AO=2x,由勾股定理就可以求出AD=$\sqrt{3}x$,由矩形的面积公式就可以表示纸盒的侧面积,由二次函数的性质得到其最大值的代数式,根据题意列方程,解方程即可.
解答 解:如图,![]()
∵△ABC为等边三角形,
∴∠A=∠B=∠C=60°,AB=BC=AC.
∵筝形ADOK≌筝形BEPF≌筝形AGQH,
∴AD=BE=BF=CG=CH=AK.
∵折叠后是一个三棱柱,
∴DO=PE=PF=QG=QH=OK,四边形ODEP、四边形PFGQ、四边形QHKO都为矩形.
∴∠ADO=∠AKO=90°.
连结AO,
在Rt△AOD和Rt△AOK中,
$\left\{\begin{array}{l}{AO=AO}\\{OD=OK}\end{array}\right.$,
∴Rt△AOD≌Rt△AOK(HL).
∴∠OAD=∠OAK=30°.
设OD=x,则AO=2x,由勾股定理就可以求出AD=$\sqrt{3}$x,
∴DE=a-$2\sqrt{3}$x,
∴纸盒侧面积=3x(a-2$\sqrt{3}$x)=-6$\sqrt{3}$x2+3ax=-6$\sqrt{3}$(x-$\frac{\sqrt{3}}{12}a$)2+$\frac{3\sqrt{3}{a}^{2}}{24}$,
∵该纸盒侧面积的最大值是$\frac{9\sqrt{3}}{8}$cm2,
∴$\frac{3\sqrt{3}{a}^{2}}{24}$=$\frac{9\sqrt{3}}{8}$,解得:a=3,或a=-3(舍去);
故答案为:3.
点评 本题考查了等边三角形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,矩形的面积公式的运用,二次函数的性质的运用,解答时表示出纸盒的侧面积是关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 正方体、圆柱、圆锥、三棱锥 | B. | 正方体、三棱锥、圆柱、圆锥 | ||
| C. | 正方体、圆柱、三棱柱、圆锥 | D. | 三棱锥、圆锥、正方体、圆锥 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com