分析 探究:过P作PE⊥OA,PF⊥OB,由OC为∠AOB的平分线,利用角平分线定理得到PE=PF,利用同角的余角相等得到一对角相等,利用ASA得到△PME与△PNF全等,利用全等三角形的对应边相等即可得证;
应用:如图②,过点P作PG⊥AB,垂足点G.证明Rt△PEA≌Rt△PEA,Rt△PGB≌Rt△PFB,所以AE=AG,BF=BG,求出AB=$\sqrt{A{C}^{2}+B{C}^{2}}$=5,所以AE+BF=5.
解答 解:探究:如图①,![]()
过P作PE⊥OA于E,PF⊥OB于F,
∵OC是∠AOB的平分线,
∴PE=PF,∠PEM=∠PFN=90°,
∵∠MPE+∠MPF=90°,∠NPF+∠MPF=90°,
∴∠MPE=∠NPF,
在△PME和△PNF中,
$\left\{\begin{array}{l}{∠PEM=∠PFN=90°}\\{∠MPE=∠NPF}\\{PE=PF}\end{array}\right.$,
∴△PME≌△PNF(ASA),
∴PM=PN.
应用:如图②,过点P作PG⊥AB,垂足点G.![]()
∵PE⊥AC,PF⊥BC,且∠BAC,∠ABC的外角平分线交于点P,
∴PE=PG,PF=PG,
∵PG=PG,
在Rt△PEA和Rt△PEA中,
$\left\{\begin{array}{l}{PE=PG}\\{PA=PA}\end{array}\right.$
∴Rt△PEA≌Rt△PEA,
在Rt△PGB和Rt△PFB中,
$\left\{\begin{array}{l}{PG=PF}\\{PB=PB}\end{array}\right.$
∴Rt△PGB≌Rt△PFB,
∴AE=AG,BF=BG,
∵∠ACB=90°,且BC=3,AC=4,
∴AB=$\sqrt{A{C}^{2}+B{C}^{2}}$=5,
∴AE+BF=5.
故答案为:5.
点评 此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 35×20-2×20x-35x=600 | B. | 35×20-20x-35x+x2=600 | ||
| C. | (35-2x)(20-x)=600 | D. | (35-x)(20-x)=600 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{4}{3}$ | B. | 3 | C. | 5 | D. | $\frac{27}{4}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 2cm | B. | 4cm | C. | 2$\sqrt{2}$cm | D. | 4$\sqrt{2}$cm |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
| 年限x | 1 | 2 | 3 | 4 |
| 实际价值y(万元) | 12-0.6 | 12-1.2 | 12-1.8 | 12-2.4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com