【题目】如图,点A、B分别在x,y轴上,点D在第一象限内,DC⊥x轴于点C,AO=CD=2,AB=DA= ,反比例函数y= (k>0)的图象过CD的中点E.
(1)求证:△AOB≌△DCA;
(2)求k的值;
(3)△BFG和△DCA关于某点成中心对称,其中点F在y轴上,是判断点G是否在反比例函数的图象上,并说明理由.
【答案】
(1)
证明:∵点A、B分别在x,y轴上,点D在第一象限内,DC⊥x轴,
∴∠AOB=∠DCA=90°,
在Rt△AOB和Rt△DCA中
,
∴Rt△AOB≌Rt△DCA
(2)
解:在Rt△ACD中,CD=2,AD= ,
∴AC= =1,
∴OC=OA+AC=2+1=3,
∴D点坐标为(3,2),
∵点E为CD的中点,
∴点E的坐标为(3,1),
∴k=3×1=3;
(3)
解:点G在反比例函数的图象上.理由如下:
∵△BFG和△DCA关于某点成中心对称,
∴△BFG≌△DCA,
∴FG=CA=1,BF=DC=2,∠BFG=∠DCA=90°,
而OB=AC=1,
∴OF=OB+BF=1+2=3,
∴G点坐标为(1,3),
∵1×3=3,
∴G(1,3)在反比例函数y= 的图象上.
【解析】(1)利用“HL”证明△AOB≌△DCA;(2)先利用勾股定理计算出AC=1,再确定C点坐标,然后根据点E为CD的中点可得到点E的坐标为(3,1),则可根据反比例函数图象上点的坐标特征求得k=3;(3)根据中心对称的性质得△BFG≌△DCA,所以FG=CA=1,BF=DC=2,∠BFG=∠DCA=90°,则可得到G点坐标为(1,3),然后根据反比例函数图象上点的坐标特征判断G点是否在函数y= 的图象上.
科目:初中数学 来源: 题型:
【题目】图1是一张可以折叠的小床展开后支撑起来放在地面的示意图,此时点A、B、C在同一直线上,且∠ACD=90°,图2是小床支撑脚CD折叠的示意图,在折叠过程中,△ACD变形为四边形ABC′D′,最后折叠形成一条线段BD″.
(1)小床这样设计应用的数学原理是 .
(2)若AB:BC=1:4,则tan∠CAD的值是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了估计鱼塘中成品鱼(个体质量在0.5kg及以上,下同)的总质量,先从鱼塘中捕捞50条成品鱼,称得它们的质量如表:
质量/kg | 0.5 | 0.6 | 0.7 | 1.0 | 1.2 | 1.6 | 1.9 |
数量/条 | 1 | 8 | 15 | 18 | 5 | 1 | 2 |
然后做上记号再放回水库中,过几天又捕捞了100条成品鱼,发现其中2条带有记号.
(1)请根据表中数据补全如图的直方图(各组中数据包括左端点不包括右端点).
(2)根据图中数据分组,估计从鱼塘中随机捕一条成品鱼,其质量落在哪一组的可能性最大?
(3)根据图中数据分组,估计鱼塘里质量中等的成品鱼,其质量落在哪一组内?
(4)请你用适当的方法估计鱼塘中成品鱼的总质量(精确到1kg).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,BE= DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是( )
A.y=﹣
B.y=﹣
C.y=﹣
D.y=﹣
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx(a≠0)的图象经过点A(1,4),对称轴是直线x=﹣ ,线段AD平行于x轴,交抛物线于点D.在y轴上取一点C(0,2),直线AC交抛物线于点B,连结OA,OB,OD,BD.
(1)求该二次函数的解析式;
(2)求点B坐标和坐标平面内使△EOD∽△AOB的点E的坐标;
(3)设点F是BD的中点,点P是线段DO上的动点,问PD为何值时,将△BPF沿边PF翻折,使△BPF与△DPF重叠部分的面积是△BDP的面积的 ?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知等腰三角形的腰长为6cm,底边长为4cm,以等腰三角形的顶角的顶点为圆心5cm为半径画圆,那么该圆与底边的位置关系是( )
A.相离
B.相切
C.相交
D.不能确定
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线y=﹣x2+2bx+c与x轴交于点A、B(点A在点B的右侧),且与y轴正半轴交于点C,已知A(2,0)
(1)当B(﹣4,0)时,求抛物线的解析式;
(2)O为坐标原点,抛物线的顶点为P,当tan∠OAP=3时,求此抛物线的解析式;
(3)O为坐标原点,以A为圆心OA长为半径画⊙A,以C为圆心, OC长为半径画圆⊙C,当⊙A与⊙C外切时,求此抛物线的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AC=4,D为BC上一点,CD=2,且△ADC与△ABD的面积比为1:3;
(1)求证:△ADC∽△BAC;
(2)当AB=8时,求sinB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学校为参加高邮市“五运会”广播操表演,准备从七、八、九三个年级分别选送到位的一男、一女共6名备选人中,每个年级随机选出1名学生,共3名学生担任领操员
(1)选出3名领操员中,男生的人数可能是
(2)求选出“两男一女”3名领操员的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com