精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系中,抛物线y=﹣x2+2bx+c与x轴交于点A、B(点A在点B的右侧),且与y轴正半轴交于点C,已知A(2,0)
(1)当B(﹣4,0)时,求抛物线的解析式;
(2)O为坐标原点,抛物线的顶点为P,当tan∠OAP=3时,求此抛物线的解析式;
(3)O为坐标原点,以A为圆心OA长为半径画⊙A,以C为圆心, OC长为半径画圆⊙C,当⊙A与⊙C外切时,求此抛物线的解析式.

【答案】
(1)解:把点A(2,0)、B(﹣4,0)的坐标代入y=﹣x2+2bx+c得,

∴b=﹣1.c=8,

∴抛物线的解析式为y=﹣x2﹣2x+8;


(2)解:如图1,

设抛物线的对称轴与x轴的交点为H,把点A(2,0)的坐标代入y=﹣x2+2bx+c得,

﹣4+4b+c=0①,

∵抛物线的顶点为P,

∴y=﹣x2+2bx+c=﹣(x﹣b)2+b2+c,

∴P(b,b2+c),

∴PH=b2+c,AH=2﹣b,

在Rt△PHA中,tan∠OAP=

=3②,

联立①②得,

(不符合题意,舍)或

∴抛物线的解析式为y=﹣x2﹣2x+8;


(3)解:∵如图2,

抛物线y=﹣x2+2bx+c与y轴正半轴交于点C,

∴C(0,c)(c>0),

OC= c,

∵A(2,0),

∴OA=2,

∴AC=

∵⊙A与⊙C外切,

∴AC= c+2=

∴c=0(舍)或c=

把点A(2,0)的坐标代入y=﹣x2+2bx+c得,﹣4+4b+c=0,

∴b=

∴抛物线的解析式为y=﹣x2+ x+


【解析】(1)利用待定系数法即可确定出函数解析式;(2)用tan∠OAP=3建立一个b,c的关系,再结合点A得出的等式即可求出b,c进而得出函数关系式;(3)用两圆外切,半径之和等于AC建立方程结合点A代入建立的方程即可得出抛物线解析式.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知BC是⊙O的直径,AC切⊙O于点C,AB交⊙O于点D,E为AC的中点,连结DE.
(1)若AD=DB,OC=5,求切线AC的长;
(2)求证:ED是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】九(1)班同学在上学期的社会实践活动中,对学校旁边的山坡护墙和旗杆进行了测量.

(1)如图1,第一小组用一根木条CD斜靠在护墙上,使得DB与CB的长度相等,如果测量得到∠CDB=38°,求护墙与地面的倾斜角α的度数.
(2)如图2,第二小组用皮尺量的EF为16米(E为护墙上的端点),EF的中点离地面FB的高度为1.9米,请你求出E点离地面FB的高度.
(3)如图3,第三小组利用第一、第二小组的结果,来测量护墙上旗杆的高度,在点P测得旗杆顶端A的仰角为45°,向前走4米到达Q点,测得A的仰角为60°,求旗杆AE的高度(精确到0.1米).
备用数据:tan60°=1.732,tan30°=0.577, =1.732, =1.414.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A、B分别在x,y轴上,点D在第一象限内,DC⊥x轴于点C,AO=CD=2,AB=DA= ,反比例函数y= (k>0)的图象过CD的中点E.

(1)求证:△AOB≌△DCA;
(2)求k的值;
(3)△BFG和△DCA关于某点成中心对称,其中点F在y轴上,是判断点G是否在反比例函数的图象上,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°,AC=8,BC=6,D是AB的中点,点E在边AC上,将△ADE沿DE翻折,使得点A落在点A'处,当A'E⊥AC时,A'B=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一艘海轮位于小岛C的南偏东60°方向,距离小岛120海里的A处,该海轮从A处正北方向航行一段距离后,到达位于小岛C北偏东45°方向的B处.

(1)求该海轮从A处到B处的航行过程中与小岛C之间的最短距离(记过保留根号);
(2)如果该海轮以每小时20海里的速度从B处沿BC方向行驶,求它从B处到达小岛C的航行时间(结果精确到0.1小时).(参考数据: =1.41, =1.73)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】正方形ABCD的边长为3,点E在边CD的延长线上,连接BE交边AD于F,如果DE=1,那么AF=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在坡AP的坡脚A处竖有一根电线杆AB,为固定电线杆在地面C处和坡面D处各装一根等长的引拉线BC和BD,过点D作地面MN的垂线DH,H为垂足,已知点C、A、H在一直线上,若测得AC=7米,AD=12米,坡角为30° , 试求电线杆AB的高度;(精确到0.1米)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB是⊙O的直径,直线CD与⊙O相切于C点,AC平分∠DAB.
(1)求证:AD⊥CD;
(2)若AD=2, ,求⊙O的半径R的长.

查看答案和解析>>

同步练习册答案