精英家教网 > 初中数学 > 题目详情

【题目】如图,已知BC是⊙O的直径,AC切⊙O于点C,AB交⊙O于点D,E为AC的中点,连结DE.
(1)若AD=DB,OC=5,求切线AC的长;
(2)求证:ED是⊙O的切线.

【答案】
(1)解:连接CD,

∵BC是⊙O的直径,

∴∠BDC=90°,

即CD⊥AB,

∵AD=DB,OC=5,

∴CD是AB的垂直平分线,

∴AC=BC=2OC=10


(2)证明:连接OD,如图所示,

∵∠ADC=90°,E为AC的中点,

∴DE=EC= AC,

∴∠1=∠2,

∵OD=OC,

∴∠3=∠4,

∵AC切⊙O于点C,

∴AC⊥OC,

∴∠1+∠3=∠2+∠4=90°,

即DE⊥OD,

∴ED是⊙O的切线.


【解析】(1)连接CD,由直径所对的圆周角为直角可得:∠BDC=90°,即可得:CD⊥AB,然后根据AD=DB,进而可得CD是AB的垂直平分线,进而可得 AC=BC=2OC=10;(2)连接OD,先由直角三角形中线的性质可得DE=EC,然后根据等边对等角可得∠1=∠2,由OD=OC,根据等边对等角可得∠3=∠4,然后根据切线的性质可得∠2+∠4=90°,进而可得:∠1+∠3=90°,进而可得:DE⊥OD,从而可得:ED是⊙O的切线.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点E是正方形ABCD的边BC延长线上一点,连结DE,过顶点B作BF⊥DE,垂足为F,BF分别交AC于H,交BC于G.
(1)求证:BG=DE;
(2)若点G为CD的中点,求 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】宁波火车站北广场将于2015年底投入使用,计划在广场内种植A,B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵
(1)A,B两种花木的数量分别是多少棵?
(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】图1是一张可以折叠的小床展开后支撑起来放在地面的示意图,此时点A、B、C在同一直线上,且∠ACD=90°,图2是小床支撑脚CD折叠的示意图,在折叠过程中,△ACD变形为四边形ABC′D′,最后折叠形成一条线段BD″.
(1)小床这样设计应用的数学原理是
(2)若AB:BC=1:4,则tan∠CAD的值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+c(a≠0)与y轴交于点A,与x轴交于B,C两点(点C在x轴正半轴上),△ABC为等腰直角三角形,且面积为4,现将抛物线沿BA方向平移,平移后的抛物线过点C时,与x轴的另一点为E,其顶点为F,对称轴与x轴的交点为H.

(1)求a、c的值.
(2)连接OF,试判断△OEF是否为等腰三角形,并说明理由.
(3)现将一足够大的三角板的直角顶点Q放在射线AF或射线HF上,一直角边始终过点E,另一直角边与y轴相交于点P,是否存在这样的点Q,使以点P、Q、E为顶点的三角形与△POE全等?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是某地2月18日到23日PM2.5浓度和空气质量指数AQI的统计图(当AQI不大于100时称空气质量为“优良”).由图可得下列说法:①18日的PM2.5浓度最低;②这六天中PM2.5浓度的中位数是112μg/m3;③这六天中有4天空气质量为“优良”;④空气质量指数AQI与PM2.5浓度有关.其中正确的是(
A.①②③
B.①②④
C.①③④
D.②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“综合与实践”学习活动准备制作一组三角形,记这些三角形的三边分别为a,b,c,并且这些三角形三边的长度为大于1且小于5的整数个单位长度.
(1)用记号(a,b,c)(a≤b≤c)表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的一个三角形.请列举出所有满足条件的三角形.
(2)用直尺和圆规作出三边满足a<b<c的三角形(用给定的单位长度,不写作法,保留作图痕迹).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了估计鱼塘中成品鱼(个体质量在0.5kg及以上,下同)的总质量,先从鱼塘中捕捞50条成品鱼,称得它们的质量如表:

质量/kg

0.5

0.6

0.7

1.0

1.2

1.6

1.9

数量/条

1

8

15

18

5

1

2

然后做上记号再放回水库中,过几天又捕捞了100条成品鱼,发现其中2条带有记号.
(1)请根据表中数据补全如图的直方图(各组中数据包括左端点不包括右端点).
(2)根据图中数据分组,估计从鱼塘中随机捕一条成品鱼,其质量落在哪一组的可能性最大?
(3)根据图中数据分组,估计鱼塘里质量中等的成品鱼,其质量落在哪一组内?
(4)请你用适当的方法估计鱼塘中成品鱼的总质量(精确到1kg).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线y=﹣x2+2bx+c与x轴交于点A、B(点A在点B的右侧),且与y轴正半轴交于点C,已知A(2,0)
(1)当B(﹣4,0)时,求抛物线的解析式;
(2)O为坐标原点,抛物线的顶点为P,当tan∠OAP=3时,求此抛物线的解析式;
(3)O为坐标原点,以A为圆心OA长为半径画⊙A,以C为圆心, OC长为半径画圆⊙C,当⊙A与⊙C外切时,求此抛物线的解析式.

查看答案和解析>>

同步练习册答案