【题目】开学初,我县某校开展“新学期、新征程,新气象”入学系列教育活动,训练两天后,为了在合唱中给某班学生恰当地分配声部,该校音乐教师李老师随机抽取学生试唱,根据试唱情况把所抽学生分成A、B、C、D四种声部等级,并根据等级统计结果绘制了如图1和如图2两幅不完整的统计图,请根据图中提供的信息完成以下问题:
(1)扇形统计图中D等对应的圆心角的度数是 °,补全条形统计图;
(2)已知A等声部的同学有一位是男生,李老师准备从这4位同学中随机选择两位同学教其他同学,请用列表法或画树状图的方法求出选中的两名同学恰好是一男一女的概率?
【答案】【答题空22-1】(1)43.2°,补图如下见解析;(2)选中的两名同学恰好是一男一女的概率是.
【解析】
(1)用B等级的人数除以其所占的百分比求出总人数,再减去A、B、C等级的人数可得D等级人数,求出D等级所占百分比乘以360度可得扇形统计图中D等对应的圆心角的度数;(2)选出第一名同学可能情况为男,女,女,女,第二名同学则为剩余的3种情况,列出树状图即可求出概率.
(1)D等级的人数有:10÷40%﹣4﹣10﹣8=3(人),
则扇形统计图中D等对应的圆心角的度数是360°×=43.2°,
补图如下:
故答案为:43.2;
(2)画树状图如下:
共有12种等可能的结果数,其中选中的两名同学恰好是一男一女的有6种,
则选中的两名同学恰好是一男一女的概率是.
科目:初中数学 来源: 题型:
【题目】某市为了解九年级学生数学模拟考试成绩情况,随机抽取部分学生的成绩进行分析,制成频数分布表如下(成绩得分均为整数):
组别 | 成绩分组 | 频数 | 频率 |
1 | 47.5~59.5 | 2 | 0.05 |
2 | 59.5~71.5 | 4 | 0.10 |
3 | 71.5~83.5 | a | 0.2 |
4 | 83.5~95.5 | 10 | 0.25 |
5 | 95.5~107.5 | b | c |
6 | 107.5~120 | 6 | 0.15 |
合计 | d | 1.00 |
根据表中提供的信息解答下列问题:
(1)频数分布表中的a= ,b= ,c= ,d= ;
(2)补充完整频数分布直方图.
(3)已知全市九年级共有3500名学生参加考试,成绩96分及以上为优秀,估计全市九年级学生数学模拟考试成绩为优秀的学生人数是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面材料:
已知实数m,n满足(2m3+n3+1)(2m3+n3-1)=80,试求2m3+n3的值
解:设2m3+n3=t,则原方程变为(t+1)(t-1)=80,整理得t2-1=80,t2=81, t=±9,所以2m3+n3=±9
上面这种方法称为“换元法”,把其中某些部分看成一个整体,并用新字母代替(即换元),则能使复杂的问题简单化.
根据以上阅读材料内容,解决下列问题,并写出解答过程.
已知实数x,y满足(4x2+4y2+3)(4x2+4y2-3)=27,求x2+y2的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将一条长为40cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.
(1)要使这两个正方形的面积之和等于52cm2,那么这段铁丝剪成两段后的长度分别是多少?
(2)两个正方形的面积之和可能等于48cm2吗?若能,求出两段铁丝的长度;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形OABC是矩形,四边形ADEF是正方形,点A、D在x轴的负半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数(k为常数,k ≠0)的图象上,正方形ADEF的面积为16,且BF=2AF,则k值为
A.-8B.-12C.-24D.-36
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】四边形ABCD是正方形,△ADF旋转一定角度后得到△ABE,如图所示,如果AF=4,AB=7
(1)指出旋转中心和旋转角度.
(2)求DE的长度.
(3)BE与DF垂直吗? 说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2﹣2ax﹣2(a≠0).
(1)该二次函数图象的对称轴是直线 ;
(2)若该二次函数的图象开口向上,当﹣1≤x≤5时,函数图象的最高点为M,最低点为N,点M的纵坐标为,求点M和点N的坐标;
(3)若该二次函数的图象开口向下,对于该二次函数图象上的两点A(x1,y1)、B(x2,y2),当x2≥3时,均有y1≥y2,请结合图象,直接写出x1的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知:关于x的二次函数的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.
(1)求二次函数的表达式;
(2)在y轴上是否存在一点P,使△PBC为等腰三角形.若存在,请求出点P的坐标;
(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到 达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com