分析 (1)根据邻补角的定义求出∠EOC,再根据角平分线的定义求出∠AOC,然后根据对顶角相等解答.
(2)由已知条件和对顶角相等得出∠MFC=∠MFH=∠BOD+90°=126°,得出∠ONF=90°,求出∠OFM=54°,延长∠OFG=2∠OFM=108°,证出∠OFG+∠EOC=180°,即可得出结论.
解答 解:∵∠EOC:∠EOD=2:3,
∴∠EOC=180°×$\frac{2}{3+2}$=72°,
∵OA平分∠EOC,
∴∠AOC=$\frac{1}{2}$∠EOC=$\frac{1}{2}$×72°=36°,![]()
∴∠BOD=∠AOC=36°.
(2)延长FM交AB于N,如图所示:
∵∠MFH-∠BOD=90°,FM平分∠OFG,
∴∠MFC=∠MFH=∠BOD+90°=126°,
∴∠ONF=126°-36°=90°,
∴∠OFM=90°-36°=54°,
∴∠OFG=2∠OFM=108°,
∴∠OFG+∠EOC=180°,
∴OE∥GH.
点评 本题考查了平行线的判定、角平分线定义、角的互余关系等知识;熟练掌握平行线的判定、角平分线定义是解决问题的关键,(2)有一定难度.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com