精英家教网 > 初中数学 > 题目详情
8.如图,BC⊥CA,BC=CA,DC⊥CE,DC=CE,直线BD与AE交于点F,交AC于点G,连接CF.
(1)求证:△ACE≌△BCD;
(2)求证:BF⊥AE;
(3)请判断∠CFE与∠CAB的大小关系并说明理由.

分析 (1)根据垂直的定义得到∠ACB=∠DCE=90°,由角的和差得到∠BCD=∠ACE,即可得到结论;
(2)根据全等三角形的性质得到∠CBD=∠CAE,根据对顶角的性质得到∠BGC=∠AGE,由三角形的内角和即可得到结论;
(3)过C作CH⊥AE于H,CI⊥BF于I,根据全等三角形的性质得到AE=BD,S△ACE=S△BCD,根据三角形的面积公式得到CH=CI,于是得到CF平分∠BFH,推出△ABC是等腰直角三角形,即可得到结论.

解答 证明:(1)∵BC⊥CA,DC⊥CE,
∴∠ACB=∠DCE=90°,
∴∠BCD=∠ACE,
在△BCD与△ACE中,
$\left\{\begin{array}{l}{BC=CA}\\{∠ACD=∠ACE}\\{CD=CE}\end{array}\right.$,
∴△ACE≌△BCD;

(2)∵△BCD≌△ACE,
∴∠CBD=∠CAE,
∵∠BGC=∠AGE,
∴∠AFB=∠ACB=90°,
∴BF⊥AE;

(3)∠CFE=∠CAB,
过C作CH⊥AE于H,CI⊥BF于I,∵△BCD≌△ACE,
∴AE=BD,S△ACE=S△BCD
∴CH=CI,
∴CF平分∠BFH,
∵BF⊥AE,
∴∠BFH=90°,∠CFE=45°,
∵BC⊥CA,BC=CA,
∴△ABC是等腰直角三角形,
∴∠CAB=45°,
∴∠CFE=∠CAB.

点评 本题考查了全等三角形的判定和性质,角平分线的定义,角平分线的性质,等腰直角三角形的性质,正确的作出辅助线是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

18.综合与探究:如图,抛物线y=-$\frac{1}{4}$x2+bx+c与x轴交于A(-1,0),B(5,0)两点,过点B作线段BC⊥x轴,交直线y=-2x于点C.

(1)求该抛物线的解析式;
(2)求点B关于直线y=-2x的对称点B′的坐标,判定点B′是否在抛物线上,并说明理由;
(3)点P是抛物线上一动点,过点P作y轴的平行线,交线段B′C于点D,是否存在这样的点P,使四边形PBCD是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,△ABC的各顶点的坐标分别为A(-3,2),B(2,1),C(3,5)
(1)画出△ABC关于x轴对称的△A1B1C1
(2)分别写出点A、B、C关于y轴对称的点A2、B2、C2的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,直线AB,CD相交于点O,OA平分∠EOC,且∠EOC:∠EOD=2:3.
(1)求∠BOD的度数;
(2)如图2,点F在OC上,直线GH经过点F,FM平分∠OFG,且∠MFH-∠BOD=90°,求证:OE∥GH.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.已知:点O为直线AB上一点,∠COD=90°,射线OE平分∠AOD.

(1)如图①所示,若∠COE=20°,则∠BOD=40°.
(2)若将∠COD绕点O旋转至图②的位置,试判断∠BOD和∠COE的数量关系,并说明理由;
(3)若将∠COD绕点O旋转至图③的位置,∠BOD和∠COE的数量关系是否发生变化?并请说明理由.
(4)若将∠COD绕点O旋转至图④的位置,继续探究∠BOD和∠COE的数量关系,请直接写出∠BOD和∠COE之间的数量关系:∠BOD+2∠COE=360°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.已知关于x的方程2x+5=1和a(x+3)=$\frac{1}{2}$a+x的解相同,求a2-$\frac{a}{2}$+1的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.潍坊冬季里某一天最高气温是7℃,最低气温是零下4℃,这一天潍坊最高气温与最低气温的温差是11℃.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.某人骑自行车从甲地到乙地,到达乙地他马上返回甲地.如图反映的是他离甲地的距离s(km)及他骑车的时间t(h)之间的关系,则下列说法正确的是(  )
A.甲、乙两地之间的距离为60km
B.他从甲地到乙地的平均速度为30km/h
C.当他离甲地15km时,他骑车的时间为1h
D.若他从乙地返回甲地的平均速度为10km/h,则点A表示的数字为5

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.如图,在△ABC中,∠C=90°,BD平分∠ABC交AC于D,DE是AB的垂直平分线,若AD=3,则AC等于(  )
A.4B.4.5C.5D.6

查看答案和解析>>

同步练习册答案