分析 (1)根据垂直的定义得到∠ACB=∠DCE=90°,由角的和差得到∠BCD=∠ACE,即可得到结论;
(2)根据全等三角形的性质得到∠CBD=∠CAE,根据对顶角的性质得到∠BGC=∠AGE,由三角形的内角和即可得到结论;
(3)过C作CH⊥AE于H,CI⊥BF于I,根据全等三角形的性质得到AE=BD,S△ACE=S△BCD,根据三角形的面积公式得到CH=CI,于是得到CF平分∠BFH,推出△ABC是等腰直角三角形,即可得到结论.
解答 证明:(1)∵BC⊥CA,DC⊥CE,
∴∠ACB=∠DCE=90°,
∴∠BCD=∠ACE,
在△BCD与△ACE中,
$\left\{\begin{array}{l}{BC=CA}\\{∠ACD=∠ACE}\\{CD=CE}\end{array}\right.$,
∴△ACE≌△BCD;
(2)∵△BCD≌△ACE,
∴∠CBD=∠CAE,
∵∠BGC=∠AGE,
∴∠AFB=∠ACB=90°,
∴BF⊥AE;
(3)∠CFE=∠CAB,
过C作CH⊥AE于H,CI⊥BF于I,∵△BCD≌△ACE,
∴AE=BD,S△ACE=S△BCD,
∴CH=CI,
∴CF平分∠BFH,![]()
∵BF⊥AE,
∴∠BFH=90°,∠CFE=45°,
∵BC⊥CA,BC=CA,
∴△ABC是等腰直角三角形,
∴∠CAB=45°,
∴∠CFE=∠CAB.
点评 本题考查了全等三角形的判定和性质,角平分线的定义,角平分线的性质,等腰直角三角形的性质,正确的作出辅助线是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 甲、乙两地之间的距离为60km | |
| B. | 他从甲地到乙地的平均速度为30km/h | |
| C. | 当他离甲地15km时,他骑车的时间为1h | |
| D. | 若他从乙地返回甲地的平均速度为10km/h,则点A表示的数字为5 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 4 | B. | 4.5 | C. | 5 | D. | 6 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com