【题目】规定:如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根,且其中一个根是另一个根的2倍,则称这样的方程为“倍根方程”现有下列结论
①方程x2+2x﹣8=0是倍根方程;
②若关于x的方程x2+ax+2=0是倍根方程,则a=±3;
③若(x﹣3)(mx﹣n)=0是倍根方程,则n=6m或3n=2m;
④若点(m,n)在反比例函数y=的图象上,则关于x的方程mx2﹣3x+n=0是倍根方程.
上述结论中正确的有( )
A. ①②B. ③④C. ②③D. ②④
【答案】D
【解析】
】①通过解方程得到该方程的根,结合“倍根方程”的定义进行判断;
②设x2=2x1,得到x1x2=2x12=2,得到当x1=1时,x2=2,当x1=-1时,x2=-2,于是得到结论;
③根据“倍根方程”的定义即可得到结论;
④若点(m,n)在反比例函数y=的图象上,得到mn=2,然后解方程mx2-3x+n=0即可得到正确的结论;
解:①∵方程x2+2x-8=0的两个根是x1=-4,x2=2,则2×2≠-4,
∴方程x2+2x-8=0不是倍根方程,故①错误;
②若关于x的方程x2+ax+2=0是倍根方程,则2x1=x2,
∵x1+x2=-a,x1x2=2,
∴2x12=2,解得x1=±1,
∴x2=±2,
∴a=±3,故②正确;
③解方程(x-3)(mx-n)=0得,,
若(x-3)(mx-n)=0是倍根方程,则或,
∴n=6m或3m=2n,故③错误;
④∵点(m,n)在反比例函数y=的图象上,
∴mn=2,即,
∴关于x的方程为,
解方程得,
∴x2=2x1,
∴关于x的方程mx2-3x+n=0是倍根方程,故④正确;
故选:D.
科目:初中数学 来源: 题型:
【题目】在ABCD中,∠BAD的平分线交直线BC于点E,交直线DC的延长线于点F,以EC、CF为邻边作ECFG.
(1)如图1,证明ECFG为菱形;
(2)如图2,若∠ABC=120°,连接BG、CG,并求出∠BDG的度数:
(3)如图3,若∠ABC=90°,AB=6,AD=8,M是EF的中点,求DM的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一元二次方程ax2+bx+c=0(a≠0)中,下列说法:
①若a+b+c=0,则b2﹣4ac>0;
②若方程两根为﹣1和2,则2a+c=0;
③若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;
④若b=2a+c,则方程有两个不相等的实根.其中正确的有( )
A. ①②③ B. ①②④ C. ②③④ D. ①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】直线y=x+4与x轴、y轴分别交于点A和点B,点C,D分别为线段AB,OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为.
A. (-3,0) B. (-6,0) C. (-,0) D. (-,0)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线的顶点为P(1,4),抛物线与y轴交于点C(0,3),与x轴交于A、B两点.
(1)求此抛物线的解析式;
(2)求四边形OBPC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.
(1)求证:四边形BCFE是菱形;
(2)若CE=2,∠BCF=120°,求菱形BCFE的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2016年,某贫困户的家庭年人均纯收入为2500元,通过政府产业扶持,发展了养殖业后,到2018年,家庭年人均纯收入达到了3600元.
(1)求该贫困户2016年到2018年家庭年人均纯收入的年平均增长率;
(2)若年平均增长率保持不变,2019年该贫困户的家庭年人均纯收入是否能达到4200元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明同学在综合实践活动中对本地的一座古塔进行了测量.如图,他在山坡坡脚P处测得古塔顶端M的仰角为,沿山坡向上走25m到达D处,测得古塔顶端M的仰角为.已知山坡坡度,即,请你帮助小明计算古塔的高度ME.(结果精确到0.1m,参考数据:)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A′B′C,M是BC的中点,P是A′B′的中点,连接PM,若BC=2,∠BAC=30°,则线段PM的最大值是_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com