17£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬Å×ÎïÏßy=$\frac{8\sqrt{2}}{5}$x2+bx+c¾­¹ýµãA£¨$\frac{3}{2}$£¬0£©ºÍµãB£¨1£¬2$\sqrt{2}$£©£¬ÓëxÖáµÄÁíÒ»¸ö½»µãΪC£®
£¨1£©ÇóÅ×ÎïÏߵĺ¯Êý±í´ïʽ£»
£¨2£©ÈôµãPΪÅ×ÎïÏßµÚËÄÏóÏÞÉϵÄÒ»¸ö¶¯µã£¬Á¬½ÓBC£¬BP£¬CP£¬ÇëÇó¡÷BCPµÄÃæ»ýµÄ×î´óÖµ£»
£¨3£©ÈôµãDÔÚ¶Ô³ÆÖáµÄÓҲ࣬xÖáÉÏ·½µÄÅ×ÎïÏßÉÏ£¬ÇÒ¡ÏBDA=¡ÏDAC£¬Á¬½ÓBD£®µãFÊÇOBµÄÖе㣬µãMÊÇÖ±ÏßBDÉϵÄÒ»¸ö¶¯µã£¬ÇÒµãMÓëµãB²»Öغϣ¬µ±¡ÏBMF=$\frac{1}{3}$¡ÏMFOʱ£¬ÇëÇó³öÏß¶ÎBMµÄ³¤£®

·ÖÎö £¨1£©°ÑAºÍB´úÈ뺯Êý½âÎöʽ¼´¿ÉÇóµÃbºÍcµÄÖµ£¬ÇóµÃº¯Êý½âÎöʽ£»
£¨2£©Ê×ÏÈÀûÓôý¶¨ÏµÊý·¨ÇóµÃÖ±ÏßBCµÄ½âÎöʽ£¬ÉèPµÄºá×ø±êÊÇt£¬¹ýP×÷yÖáµÄƽÐÐÏß½»BCÓÚµãE£¬ÔòEµÄ×ø±ê¼´¿ÉÓÃt±íʾ£¬ÔòEFµÄ³¤¿ÉÀûÓÃt±íʾ£¬Ôò¡÷BCPµÄÃæ»ý¼´¿É±íʾ³ÉtµÄº¯Êý£¬ÀûÓú¯ÊýµÄÐÔÖʼ´¿ÉÇó½â£»
£¨3£©ÔÚRt¡÷BNFÖУ¬Óɹ´¹É¶¨ÀíÇóµÃBFµÄ³¤£¬È»ºó·Ö³Éµ±µãMλÓÚµãBÓÒ²àʱºÍµ±µãMλÓÚµãB×ó²àʱÁ½ÖÖÇé¿ö½øÐÐÌÖÂÛ£¬ÀûÓÃÖ±½ÇÈý½ÇÐεÄÐÔÖÊÒÔ¼°µÈÑüÈý½ÇÐεÄÐÔÖʼ´¿ÉÇó½â£®

½â´ð ½â£º£¨1£©¸ù¾ÝÌâÒâµÃ£º$\left\{\begin{array}{l}{\frac{8\sqrt{2}}{5}¡Á£¨\frac{3}{2}£©^{2}+\frac{3}{2}b+c=0}\\{\frac{8\sqrt{2}}{5}+b+c=2\sqrt{2}}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{b=-8\sqrt{2}}\\{c=\frac{42}{5}\sqrt{2}}\end{array}\right.$£¬
Ôòº¯ÊýµÄ½âÎöʽÊÇ£º$y=\frac{8}{5}\sqrt{2}{x^2}-8\sqrt{2}x+\frac{42}{5}\sqrt{2}$£»

£¨2£©ÔÚ$y=\frac{8}{5}\sqrt{2}{x^2}-8\sqrt{2}x+\frac{42}{5}\sqrt{2}$ÖÐÁîy=0£¬
½âµÃ£ºx=$\frac{3}{2}$»ò$\frac{7}{2}$£¬
AµÄ×ø±êÊÇ£¨$\frac{3}{2}$£¬0£©£¬ÔòCµÄ×ø±êÊÇ£¨$\frac{7}{2}$£¬0£©£®
ÉèBCµÄº¯Êý½âÎöʽÊÇ£ºy=kx+d£¬
Ôò$\left\{\begin{array}{l}{k+d=2\sqrt{2}}\\{\frac{7}{2}k+d=0}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{k=-\frac{4\sqrt{2}}{5}}\\{d=\frac{14\sqrt{2}}{5}}\end{array}\right.$£¬
ÔòÖ±ÏßBCµÄ½âÎöʽÊÇ£ºy=$-\frac{4\sqrt{2}}{5}$x+$\frac{14\sqrt{2}}{5}$£®
ÉèPµÄºá×ø±êÊÇt£¬¹ýP×÷yÖáµÄƽÐÐÏß½»BCÓÚµãE£¬ÔòEµÄ×ø±êÊÇ£¨t£¬$\frac{-4\sqrt{2}}{5}$t+$\frac{14\sqrt{2}}{5}$£©£¬PµÄ×ø±êÊÇ£¨t£¬$\frac{8\sqrt{2}}{5}{t}^{2}-8\sqrt{2}t+\frac{42\sqrt{2}}{5}$£©£®
ÔòS¡÷BCP=$\frac{1}{2}$[£¨$\frac{-4\sqrt{2}}{5}$t+$\frac{14\sqrt{2}}{5}$£©-£¨$\frac{8\sqrt{2}}{5}{t}^{2}-8\sqrt{2}t+\frac{42\sqrt{2}}{5}$£©]£¨$\frac{7}{2}$-1£©£®
ÔòS¡÷BCPµÄ×î´óÖµÊÇ£º$\frac{137\sqrt{2}}{8}$£»
£¨3£©¡ßO£¨0£¬0£©£¬B£¨1£¬2$\sqrt{2}$£©£¬FΪOBµÄÖе㣬¡àF£¨$\frac{1}{2}$£¬$\sqrt{2}$£©£®
¹ýµãF×÷FN¡ÍÖ±ÏßBDÓÚµãN£¬ÔòFN=2$\sqrt{2}$-$\sqrt{2}$=$\sqrt{2}$£¬BN=1-$\frac{1}{2}$=$\frac{1}{2}$£®
ÔÚRt¡÷BNFÖУ¬Óɹ´¹É¶¨ÀíµÃ£ºBF=$\sqrt{B{N}^{2}-F{N}^{2}}$=$\frac{3}{2}$£®
¡ß¡ÏBMF=$\frac{1}{3}$¡ÏMFO£¬¡ÏMFO=¡ÏFBM+¡ÏBMF£¬
¡à¡ÏFBM=2¡ÏBMF£®
£¨I£©µ±µãMλÓÚµãBÓÒ²àʱ£®
ÔÚÖ±ÏßBDÉϵãB×ó²àȡһµãG£¬Ê¹BG=BF=$\frac{3}{2}$£¬Á¬½ÓFG£¬ÔòGN=BG-BN=1£¬
ÔÚRt¡÷FNGÖУ¬Óɹ´¹É¶¨ÀíµÃ£ºFG=$\sqrt{G{N}^{2}+F{N}^{2}}$=$\sqrt{3}$£®
¡ßBG=BF£¬¡à¡ÏBGF=¡ÏBFG£®
ÓÖ¡ß¡ÏFBM=¡ÏBGF+¡ÏBFG=2¡ÏBMF£¬
¡à¡ÏBFG=¡ÏBMF£¬ÓÖ¡ß¡ÏMGF=¡ÏMGF£¬
¡à¡÷GFB¡×¡÷GMF£¬
¡à$\frac{GM}{GF}$=$\frac{GF}{GB}$£¬¼´$\frac{\frac{3}{2}+BM}{\sqrt{3}}=\frac{\sqrt{3}}{\frac{3}{2}}$£¬
¡àBM=$\frac{1}{2}$£»
£¨II£©µ±µãMλÓÚµãB×ó²àʱ£®
ÉèBDÓëyÖá½»ÓÚµãK£¬Á¬½ÓFK£¬ÔòFKΪRt¡÷KOBб±ßÉϵÄÖÐÏߣ¬
¡àKF=$\frac{1}{2}$OB=FB=$\frac{3}{2}$£¬
¡à¡ÏFKB=¡ÏFBM=2¡ÏBMF£¬
ÓÖ¡ß¡ÏFKB=¡ÏBMF+¡ÏMFK£¬
¡à¡ÏBMF=¡ÏMFK£¬
¡àMK=KF=$\frac{3}{2}$£¬
¡àBM=MK+BK=$\frac{3}{2}$+1=$\frac{5}{2}$£®
×ÛÉÏËùÊö£¬Ïß¶ÎBMµÄ³¤Îª$\frac{1}{2}$»ò$\frac{5}{2}$£®

µãÆÀ ±¾Ì⿼²éÁË´ý¶¨ÏµÊý·¨ÇóµÃº¯Êý½âÎöʽ£¬ÒÔ¼°ÀûÓöþ´Îº¯ÊýµÄÐÔÖÊÇó×îÖµ£¬ÕýÈ·½øÐÐÌÖÂÛÊǽâ¾ö±¾ÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®Ä³ÉçÇøÎªÁ˽â¾ÓÃñ¶Ô×ãÇò¡¢ÀºÇò¡¢ÅÅÇò¡¢ÓðëÇòºÍƹÅÒÇòÕâÎåÖÖÇòÀàÔ˶¯ÏîÄ¿µÄϲ°®Çé¿ö£¬ÔÚÉçÇø¿ªÕ¹ÁË¡°ÎÒ×îϲ°®µÄÇòÀàÔ˶¯ÏîÄ¿¡±µÄËæ»úµ÷²é£¨Ã¿Î»±»µ÷²éÕß±ØÐëÇÒÖ»ÄÜÑ¡Ôñ×îϲ°®µÄÒ»ÖÖÇòÀàÔ˶¯ÏîÄ¿£©£¬²¢½«µ÷²é½á¹û½øÐÐÁËͳ¼Æ£¬»æÖƳÉÁËÈçͼËùʾµÄÁ½·ù²»ÍêÕûµÄͳ¼ÆÍ¼£º

£¨1£©Ç󱾴α»µ÷²éµÄÈËÊý£»
£¨2£©½«ÉÏÃæµÄÁ½·ùͳ¼ÆÍ¼²¹³äÍêÕû£»
£¨3£©Èô¸ÃÉçÇøÏ²°®ÕâÎåÖÖÇòÀàÔ˶¯ÏîÄ¿µÄÈËÊý´óÔ¼ÓÐ4000ÈË£¬ÇëÄã¹À¼Æ¸ÃÉçÇøÏ²°®ÓðëÇòÔ˶¯ÏîÄ¿µÄÈËÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Èçͼ£¬ÒÑ֪ͼÐÎA£¬B£¬C£¬D£¬E£¬F·Ö±ðÊÇÓÐ2£¬3£¬4£¬5£¬6£¬7¸ö¡°µ¥Î»Õý·½ÐΡ±£¨Ã¿¸öСÕý·½Ðεı߳¤Îª1£©×é³ÉµÄͼÐΣ¬Èçͼ¢ÙÊÇÑ¡ÔñÆäÖÐÎå¸öͼÐÎÆ´³ÉÁËÒ»¸ö´óÕý·½ÐΣ®
£¨1£©ÇëÄãÔÚͼ¢ÚÖл­³öÑ¡ÔñÆäÖÐÁ½¸öͼÐÎÆ´³ÉÒ»¸ö´óÕý·½ÐΣ»
£¨2£©ÇëÄãÔÚͼ¢ÛÖл­³öÑ¡ÔñÆäÖÐËĸöͼÐÎÆ´³ÉÒ»¸ö´óÕý·½ÐΣ»ÒªÇó£ºÈçͼ¢Ù£¬Ã¿¸öͼÐÎÖ»ÓÃÒ»´Î²¢±ê×¢ËùʹÓÃͼÐεıàºÅ£¬²¢ÓÃʵ´ÖÏß»­³ö±ß½çÏߣ¬£¨ËµÃ÷£ºËùʹÓõÄͼÐοÉÒÔÐýת£¬Ò²¿ÉÒÔ·­×ª£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®¶ëüºÓÊǶëüµÄÒ»¸ö·ç¾°µã£®Èçͼ£¬ºÓµÄÁ½°¶PQƽÐÐÓÚMN£¬ºÓ°¶PQÉÏÓÐÒ»Åżä¸ôΪ50Ã׵IJʵÆÖùC¡¢D¡¢E¡¢¡­£¬Ð¡»ªÔÚºÓ°¶MNµÄA´¦²âµÃ¡ÏDAN=21¡ã£¬È»ºóÑØºÓ°¶×ßÁË175Ã×µ½´ïB´¦£¬²âµÃ¡ÏCBN=45¡ã£¬ÇóÕâÌõºÓµÄ¿í¶È£¨²Î¿¼Êý¾Ý£ºsin21¡ã¡Ö$\frac{9}{25}$£¬tan21¡ã¡Ö$\frac{3}{8}$£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Ä³ÏúÊÛ¹«Ë¾ÍÆÏúÒ»ÖÖ²úÆ·£¬Éèx£¨ÖÖ£©ÊÇÍÆÏú²úÆ·µÄÊýÁ¿£¬y£¨Ôª£©ÊǸ¶¸øÍÆÏúÔ±µÄÔ±¨³ê£®¹«Ë¾¸¶¸øÍÆÏúÔ±µÄÔ±¨³êµÄÁ½ÖÖ·½°¸ÈçͼËùʾ£¬ÍÆÏúÔ±¿ÉÒÔÈÎѡһÖÖÓ빫˾ǩ¶©ºÏͬ£¬¿´Í¼½â´ðÏÂÁÐÎÊÌ⣺
£¨1£©ÇóÿÖÖ¸¶³ê·½°¸y¹ØÓÚxµÄº¯Êý±í´ïʽ£»
£¨2£©µ±Ñ¡Ôñ·½°¸Ò»ËùµÃ±¨³ê¸ßÓÚÑ¡Ôñ·½°¸¶þËùµÃ±¨³êʱ£¬ÇóxµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªAB=AD£¬¡ÏBAD=¡ÏC=90¡ã£¬AE¡ÍBCÓÚE£¬
£¨1£©Èçͼ¢Ù£¬ÇóÖ¤£ºBE+CD=AE£»
£¨2£©Èçͼ¢Úͼ¢Û£¬ÇëÖ±½Óд³öBE¡¢CD¡¢AEÖ®¼äµÄÊýÁ¿¹ØÏµ£¬²»ÐèÒªÖ¤Ã÷£»
£¨3£©ÈôCE=8£¬BE=$\frac{1}{2}$AE£¬ÔòCD=4»ò12£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®Èçͼ£¬¡÷ABCÓë¡÷DEFÊÇÈ«µÈÈý½ÇÐΣ¬¼´¡÷ABC¡Õ¡÷DEF£¬ÄÇôͼÖÐÏàµÈµÄÏß¶ÎÓУ¨¡¡¡¡£©
A£®1×éB£®2×éC£®3×éD£®4×é

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬Å×ÎïÏßy=ax2+bx+cµÄͼÏóÓëxÖá½»ÓÚA¡¢BÁ½µã£¨µãAÔÚµãBµÄ×ó±ß£©£¬ÓëyÖá½»ÓÚµãC£¬µãA¡¢CµÄ×ø±ê·Ö±ðΪ£¨-1£¬0£©£¬£¨0£¬-3£©£¬Ö±Ïßx=1ΪÅ×ÎïÏߵĶԳÆÖᣮµãDΪÅ×ÎïÏߵĶ¥µã£¬Ö±ÏßBCÓë¶Ô³ÆÖáÏà½ÏÓÚµãE£®
£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ²¢Ö±½Óд³öµãDµÄ×ø±ê£»
£¨2£©µãPΪֱÏßx=1ÓÒ·½Å×ÎïÏßÉϵÄÒ»µã£¨µãP²»ÓëµãBÖØºÏ£©£®¼ÇA¡¢B¡¢C¡¢PËĵãËù¹¹³ÉµÄËıßÐÎÃæ»ýΪS£¬ÈôS=$\frac{5}{2}$S¡÷BCD£¬ÇóµãPµÄ×ø±ê£»
£¨3£©µãQÊÇÏß¶ÎBDÉϵ͝µã£¬½«¡÷DEQÑÓ±ßEQ·­Õ۵õ½¡÷D¡äEQ£¬ÊÇ·ñ´æÔÚµãQʹµÃ¡÷D¡äEQÓë¡÷BEQµÄÖØµþ²¿·ÖͼÐÎΪֱ½ÇÈý½ÇÐΣ¿Èô´æÔÚ£¬ÇëÇó³öBQµÄ³¤£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®»¯¼ò£º$\frac{{a}^{2}£¨x-b£©£¨x-c£©}{£¨a-b£©£¨a-c£©}$+$\frac{{b}^{2}£¨x-a£©£¨x-c£©}{£¨b-a£©£¨b-c£©}$+$\frac{{c}^{2}£¨x-b£©£¨x-a£©}{£¨c-b£©£¨c-a£©}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸