·ÖÎö £¨1£©°ÑAºÍB´úÈ뺯Êý½âÎöʽ¼´¿ÉÇóµÃbºÍcµÄÖµ£¬ÇóµÃº¯Êý½âÎöʽ£»
£¨2£©Ê×ÏÈÀûÓôý¶¨ÏµÊý·¨ÇóµÃÖ±ÏßBCµÄ½âÎöʽ£¬ÉèPµÄºá×ø±êÊÇt£¬¹ýP×÷yÖáµÄƽÐÐÏß½»BCÓÚµãE£¬ÔòEµÄ×ø±ê¼´¿ÉÓÃt±íʾ£¬ÔòEFµÄ³¤¿ÉÀûÓÃt±íʾ£¬Ôò¡÷BCPµÄÃæ»ý¼´¿É±íʾ³ÉtµÄº¯Êý£¬ÀûÓú¯ÊýµÄÐÔÖʼ´¿ÉÇó½â£»
£¨3£©ÔÚRt¡÷BNFÖУ¬Óɹ´¹É¶¨ÀíÇóµÃBFµÄ³¤£¬È»ºó·Ö³Éµ±µãMλÓÚµãBÓÒ²àʱºÍµ±µãMλÓÚµãB×ó²àʱÁ½ÖÖÇé¿ö½øÐÐÌÖÂÛ£¬ÀûÓÃÖ±½ÇÈý½ÇÐεÄÐÔÖÊÒÔ¼°µÈÑüÈý½ÇÐεÄÐÔÖʼ´¿ÉÇó½â£®
½â´ð
½â£º£¨1£©¸ù¾ÝÌâÒâµÃ£º$\left\{\begin{array}{l}{\frac{8\sqrt{2}}{5}¡Á£¨\frac{3}{2}£©^{2}+\frac{3}{2}b+c=0}\\{\frac{8\sqrt{2}}{5}+b+c=2\sqrt{2}}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{b=-8\sqrt{2}}\\{c=\frac{42}{5}\sqrt{2}}\end{array}\right.$£¬
Ôòº¯ÊýµÄ½âÎöʽÊÇ£º$y=\frac{8}{5}\sqrt{2}{x^2}-8\sqrt{2}x+\frac{42}{5}\sqrt{2}$£»
£¨2£©ÔÚ$y=\frac{8}{5}\sqrt{2}{x^2}-8\sqrt{2}x+\frac{42}{5}\sqrt{2}$ÖÐÁîy=0£¬
½âµÃ£ºx=$\frac{3}{2}$»ò$\frac{7}{2}$£¬
AµÄ×ø±êÊÇ£¨$\frac{3}{2}$£¬0£©£¬ÔòCµÄ×ø±êÊÇ£¨$\frac{7}{2}$£¬0£©£®
ÉèBCµÄº¯Êý½âÎöʽÊÇ£ºy=kx+d£¬
Ôò$\left\{\begin{array}{l}{k+d=2\sqrt{2}}\\{\frac{7}{2}k+d=0}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{k=-\frac{4\sqrt{2}}{5}}\\{d=\frac{14\sqrt{2}}{5}}\end{array}\right.$£¬
ÔòÖ±ÏßBCµÄ½âÎöʽÊÇ£ºy=$-\frac{4\sqrt{2}}{5}$x+$\frac{14\sqrt{2}}{5}$£®
ÉèPµÄºá×ø±êÊÇt£¬¹ýP×÷yÖáµÄƽÐÐÏß½»BCÓÚµãE£¬ÔòEµÄ×ø±êÊÇ£¨t£¬$\frac{-4\sqrt{2}}{5}$t+$\frac{14\sqrt{2}}{5}$£©£¬PµÄ×ø±êÊÇ£¨t£¬$\frac{8\sqrt{2}}{5}{t}^{2}-8\sqrt{2}t+\frac{42\sqrt{2}}{5}$£©£®
ÔòS¡÷BCP=$\frac{1}{2}$[£¨$\frac{-4\sqrt{2}}{5}$t+$\frac{14\sqrt{2}}{5}$£©-£¨$\frac{8\sqrt{2}}{5}{t}^{2}-8\sqrt{2}t+\frac{42\sqrt{2}}{5}$£©]£¨$\frac{7}{2}$-1£©£®
ÔòS¡÷BCPµÄ×î´óÖµÊÇ£º$\frac{137\sqrt{2}}{8}$£»
£¨3£©¡ßO£¨0£¬0£©£¬B£¨1£¬2$\sqrt{2}$£©£¬FΪOBµÄÖе㣬¡àF£¨$\frac{1}{2}$£¬$\sqrt{2}$£©£®
¹ýµãF×÷FN¡ÍÖ±ÏßBDÓÚµãN£¬ÔòFN=2$\sqrt{2}$-$\sqrt{2}$=$\sqrt{2}$£¬BN=1-$\frac{1}{2}$=$\frac{1}{2}$£®
ÔÚRt¡÷BNFÖУ¬Óɹ´¹É¶¨ÀíµÃ£ºBF=$\sqrt{B{N}^{2}-F{N}^{2}}$=$\frac{3}{2}$£®
¡ß¡ÏBMF=$\frac{1}{3}$¡ÏMFO£¬¡ÏMFO=¡ÏFBM+¡ÏBMF£¬
¡à¡ÏFBM=2¡ÏBMF£®
£¨I£©µ±µãMλÓÚµãBÓÒ²àʱ£®
ÔÚÖ±ÏßBDÉϵãB×ó²àȡһµãG£¬Ê¹BG=BF=$\frac{3}{2}$£¬Á¬½ÓFG£¬ÔòGN=BG-BN=1£¬
ÔÚRt¡÷FNGÖУ¬Óɹ´¹É¶¨ÀíµÃ£ºFG=$\sqrt{G{N}^{2}+F{N}^{2}}$=$\sqrt{3}$£®
¡ßBG=BF£¬¡à¡ÏBGF=¡ÏBFG£®
ÓÖ¡ß¡ÏFBM=¡ÏBGF+¡ÏBFG=2¡ÏBMF£¬
¡à¡ÏBFG=¡ÏBMF£¬ÓÖ¡ß¡ÏMGF=¡ÏMGF£¬
¡à¡÷GFB¡×¡÷GMF£¬
¡à$\frac{GM}{GF}$=$\frac{GF}{GB}$£¬¼´$\frac{\frac{3}{2}+BM}{\sqrt{3}}=\frac{\sqrt{3}}{\frac{3}{2}}$£¬
¡àBM=$\frac{1}{2}$£»
£¨II£©µ±µãMλÓÚµãB×ó²àʱ£®![]()
ÉèBDÓëyÖá½»ÓÚµãK£¬Á¬½ÓFK£¬ÔòFKΪRt¡÷KOBб±ßÉϵÄÖÐÏߣ¬
¡àKF=$\frac{1}{2}$OB=FB=$\frac{3}{2}$£¬
¡à¡ÏFKB=¡ÏFBM=2¡ÏBMF£¬
ÓÖ¡ß¡ÏFKB=¡ÏBMF+¡ÏMFK£¬
¡à¡ÏBMF=¡ÏMFK£¬
¡àMK=KF=$\frac{3}{2}$£¬
¡àBM=MK+BK=$\frac{3}{2}$+1=$\frac{5}{2}$£®
×ÛÉÏËùÊö£¬Ïß¶ÎBMµÄ³¤Îª$\frac{1}{2}$»ò$\frac{5}{2}$£®
µãÆÀ ±¾Ì⿼²éÁË´ý¶¨ÏµÊý·¨ÇóµÃº¯Êý½âÎöʽ£¬ÒÔ¼°ÀûÓöþ´Îº¯ÊýµÄÐÔÖÊÇó×îÖµ£¬ÕýÈ·½øÐÐÌÖÂÛÊǽâ¾ö±¾ÌâµÄ¹Ø¼ü£®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 1×é | B£® | 2×é | C£® | 3×é | D£® | 4×é |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com