精英家教网 > 初中数学 > 题目详情
5.峨眉河是峨眉的一个风景点.如图,河的两岸PQ平行于MN,河岸PQ上有一排间隔为50米的彩灯柱C、D、E、…,小华在河岸MN的A处测得∠DAN=21°,然后沿河岸走了175米到达B处,测得∠CBN=45°,求这条河的宽度(参考数据:sin21°≈$\frac{9}{25}$,tan21°≈$\frac{3}{8}$).

分析 设河的宽度为d米,过D作DF⊥MN于F,过C作CH⊥MN于G,构建直角三角形:Rt△ADF、Rt△BCG.通过解这两个直角三角形分别求得AF的值,依次列出关于d的方程,通过解方程来求d的值即可.

解答 解:设河的宽度为d米,
过D作DF⊥MN于F,过C作CH⊥MN于G,
在Rt△ADF中,$tan21°=\frac{DF}{AF}=\frac{d}{AF}$,
∴$AF=\frac{d}{tan21°}$,
在Rt△BCG中,$tan45°=\frac{CG}{BG}=\frac{d}{BG}$,即BG=d,
又∵AB=175,$tan21°≈\frac{3}{8}$,两树的间隔为50米,
∴AF=AG-50=AB+BG-50,
∴$\frac{8}{3}$d=175+d-50,
解得:d=75.
答:峨眉河的宽度约为75米.

点评 本题考查了解直角三角形的应用.当题中给出一定的度数时,要充分利用这些度数构造相应的直角三角形,利用锐角三角函数知识求解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

15.如图,为了测量楼的高度,自楼的顶部A看地面上的一点B,俯角为30°,已知地面上的这点与楼的水平距离BC为30m,那么楼的高度AC为10$\sqrt{3}$m(结果保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.某种上衣打8折后的销售额为160元,则这种上衣的原价为200元.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.平面直角坐标系中,矩形OABC的顶点A,C分别在坐标轴上,顶点B在第一象限内,如图所示,且OA=a,OC=b.请根据下列操作,完成后面的问题.
【操作】
(1)连接AC,OB相交于点P1,则点P1的纵坐标为$\frac{1}{2}$a;
(2)过点P1作P1D⊥x轴于点D,连接BD交AC于点P2,则点P2的纵坐标为$\frac{1}{3}$a;
(3)过点P2作P2E⊥x轴于点E,连接BE交AC于点P3,则点P3的纵坐标为$\frac{1}{4}$a;

【问题】
(1)过点P3作P3F⊥x轴于点F,连接BF交AC于点P4,直接写出点P4的纵坐标;
(2)按照上述操作进行下去,猜想点Pn(n为正整数)的纵坐标是$\frac{a}{n+1}$.(用含n的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.如图,已知:DE∥BC,若AD:AB=1:2,则S△ADE:S△ABC的值为1:4.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.如图,△ABC中,AC=2,把△ABC绕点A逆时针旋转90°得到△AB′C′,过点B′作BC的平行线,分别交AB、AC的延长线于D、E两点,∠AED=120°,EB′=2$\sqrt{3}$,AB的长为2$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,在平面直角坐标系中,抛物线y=$\frac{8\sqrt{2}}{5}$x2+bx+c经过点A($\frac{3}{2}$,0)和点B(1,2$\sqrt{2}$),与x轴的另一个交点为C.
(1)求抛物线的函数表达式;
(2)若点P为抛物线第四象限上的一个动点,连接BC,BP,CP,请求△BCP的面积的最大值;
(3)若点D在对称轴的右侧,x轴上方的抛物线上,且∠BDA=∠DAC,连接BD.点F是OB的中点,点M是直线BD上的一个动点,且点M与点B不重合,当∠BMF=$\frac{1}{3}$∠MFO时,请求出线段BM的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.某乡镇的4个村庄A、B、C、D恰好位于正方形的4个顶点上,为了解决农民出行难问题,镇政府决定修建连接各村庄的道路系统,使得每两个村庄都有直达的公路,设计人员给出了如下四个设计方案(实线表示连接的道路)

在上述四个方案中最短的道路系统是方案(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.已知代数式ax3+bx+c,当x=0时的值为2;当x=3时的值为1;求当x=-3时,代数式的值.

查看答案和解析>>

同步练习册答案