精英家教网 > 初中数学 > 题目详情

如图,在平面直角坐标系中,矩形OABC的顶点O与坐标原点重合,点A、点C分别在x轴和y轴上,点B的坐标为(10,4).若点D为OA的中点,点P为边BC上的一动点,则△OPD为等腰三角形时的点P的坐标为________.

(2,4)或(3,4)或(8,4)或(,4)
分析:分为三种情况:①OP=OD时,②DO=DP时,③OP=PD时,根据点B的坐标,根据勾股定理和等腰三角形的性质即可求出答案.
解答:∵B的坐标是(10,4),四边形OCBA是矩形,
∴OC=AB=4,
∵D为OA中点,
∴OD=AD=5,
∵P在BC上,
∴P点的纵坐标是4,

以O为圆心,以OD为半径作弧,交BC于P,此时OP=OD=5,由勾股定理求出CP==3,即P的坐标是(3,4);

以D为圆心,以OD为半径作弧,交BC于P、P′,此时DP=OD=DP′=5,
由勾股定理求出DM=DN==3,即P的坐标是(2,4),P′的坐标是(8,4);
③作OD的垂直平分线交BC于P,此时OP=DP,

P的坐标是(,4);
故答案为:(2,4)或(3,4)或(8,4)或(,4).
点评:本题考查了矩形性质和勾股定理,坐标与图形性质的应用,注意一定要进行分类讨论.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案