精英家教网 > 初中数学 > 题目详情
14.有3cm,3cm,6cm,6cm,12cm,12cm的六条线段,任选其中的三条线段组成一个等腰三角形,则最多能组成等腰三角形的个数为(  )
A.1B.2C.3D.4

分析 由题意,可分情况:3cm作腰,6cm作底或12cm作底;6cm作腰,3cm作底或12cm作底;12cm作腰,3cm或6cm作底;再根据三角形的三边关系定理:任意两边之和大于第三边,判定等腰三角形的个数.

解答 解:由题意可得,
3cm作腰,6cm作底或12cm作底,则三边分别为3cm,3cm,6cm,不能构成三角形,3cm,3cm,12cm,不能构成三角形;
6cm作腰,3cm作底或12cm作底,则三边分别为6cm,6cm,3cm,能构成三角形,6cm,6cm,12cm,不能构成三角形;
12cm作腰,3cm或6cm作底,则三边分别为12cm,12cm,3cm,能构成三角形,12cm,12cm,6cm,能构成三角形,
故最多能组成3个等腰三角形,
故选:C.

点评 本题主要考查等腰三角形的定义,三角形的三边关系,分情况讨论是解决本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.如图,已知DE∥AB,DF∥AC,∠EDC=32°,∠BDF=63°,求∠A的度数;
解:∵DF∥AC(已知)
∴∠C=∠BDF=63°两直线平行,同位角相等
又∵DE∥AB(已知)
∴∠EDC=∠B=32°两直线平行,同位角相等
∴∠A=180°-∠B-∠C=180°-32°-63°=85°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.计算:
(1)3$\sqrt{3}$-$\sqrt{8}+\sqrt{2}-\sqrt{27}$;
(2)(2$\sqrt{5}+5\sqrt{2})(2\sqrt{5}-5\sqrt{2})-(\sqrt{5}-\sqrt{2})^{2}$(2$\sqrt{5}-5\sqrt{2})-(\sqrt{5}-\sqrt{2})^{2}$-($\sqrt{5}-\sqrt{2})^{2}$2
(3)$\sqrt{\frac{3}{2}}-(\frac{5}{2}\sqrt{\frac{3}{2}}+3\sqrt{\frac{1}{6}}-\sqrt{6})$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.在△ABC中,三个顶点的坐标分别为A(0,-2)、B(2,-3)、C(4,0).
(1)将△ABC沿x轴负方向平移5个单位长度,再沿y轴在正方向平移3个单位长度得到△EFG,求△EFG的三个顶点坐标.
(2)求△EFG的面积.
(3)设点P在坐标轴上,且△ABP与△ABC的面积相等,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.已知:△ABC中,∠C>∠B,AE平分∠BAC.
(1)如图①AD⊥BC于D,若∠C=70°,∠B=30°,求出∠DAE的度数;
(2)若△ABC中,∠B=α,∠C=β(α<β),探索∠DAE与α、β间的等量关系,不必说明理由;
(3)如图②所示,在△ABC中AD⊥BC,AE平分∠BAC,F是AE上的任意一点,过F作FG⊥BC于G,且∠B=
30°,∠C=80°,请你运用(2)中结论求出∠EFG的度数;
(4)在(3)的条件下,若F点在AE的延长线上(如图③),其他条件不变,则∠EFG的度数大小发生改变吗?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.若$\frac{x+y}{y}=\frac{7}{4}$,那么$\frac{y}{x}$的值是(  )
A.$\frac{3}{4}$B.$\frac{2}{3}$C.$\frac{4}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,大圆的半径为r,直径AB上方两个半圆的直径均为r,下方两个半圆的直径分别为a,b.
(1)求直径AB上方阴影部分的面积S1
(2)用含a,b的代数式表示直径AB下方阴影部分的面积S2=$\frac{1}{4}πab$;
(3)设a=r+c,b=r-c(c>0),那么(  )
(A)S2=S1;(B)S2>S1;(C)S2<S1;(D)S2与S1的大小关系不确定;
(4)请对你在第(3)小题中所作的判断说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.已知,直线AB,CD被直线EF所截,AB∥CD,NG是∠END的角平分线,交AB于点O,如果∠1=50°,则∠ENC=80°.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.下列各数中,倒数是-3的数是(  )
A.3B.-3C.$\frac{1}{3}$D.-$\frac{1}{3}$

查看答案和解析>>

同步练习册答案