| A. | $\frac{24}{5}$ | B. | $\frac{12}{5}$ | C. | 12 | D. | 24 |
分析 设对角线相交于点O,根据菱形的对角线互相垂直平分求出AO、BO,再利用勾股定理列式求出AB,然后根据菱形的面积等对角线乘积的一半和底乘以高列出方程求解即可.
解答
解:如图,设对角线相交于点O,
∵AC=8,DB=6,
∴AO=$\frac{1}{2}$AC=$\frac{1}{2}$×8=4,
BO=$\frac{1}{2}$BD=$\frac{1}{2}$×6=3,
由勾股定理的,AB=$\sqrt{A{O}^{2}+B{O}^{2}}$=$\sqrt{{4}^{2}+{3}^{2}}$=5,
∵DH⊥AB,
∴S菱形ABCD=AB•DH=$\frac{1}{2}$AC•BD,
即5DH=$\frac{1}{2}$×8×6,
解得DH=$\frac{24}{5}$.
故选A.
点评 本题考查了菱形的性质,勾股定理,主要利用了菱形的对角线互相垂直平分的性质,难点在于利用菱形的面积的两种表示方法列出方程.
科目:初中数学 来源: 题型:选择题
| A. | 65° | B. | 50° | C. | 60° | D. | 57.5° |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | B. | C. | D. |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{2}{5}$ | B. | $\frac{5}{2}$ | C. | $-\frac{2}{5}$ | D. | $-\frac{5}{2}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com