精英家教网 > 初中数学 > 题目详情

若方程x2+(m+1)x-2=0有一个解是-1,则m=________.

-2
分析:方程的根即方程的解,就是能使方程两边相等的未知数的值,利用方程解的定义就可以得到关于m的方程,
从而求得m的值.
解答:把x=-1代入方程得:1-(m+1)-2=0,解得m=-2
点评:本题就是考查了方程的根的定义,是一个基础的题目.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

若方程|x2-5x|=a有且只有相异二实根,则a的取值范围是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

方程x2+2ax+a-4=0恒有相异两实根,若方程x2+2ax+k=0也有相异两实根,且其两根介于上面方程的两根之间,则k的取值范围是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

若方程x2+8x-4=0的两个根分别为x1、x2,则
1
x1
+
1
x2
的值为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

若方程x2-ax-3a=0的一个根为6,则另一个根为
-2
-2

查看答案和解析>>

科目:初中数学 来源: 题型:

若方程x2+px=q=0可化(x+
1
2
)2=
3
4
的形式,则pq=
-
1
2
-
1
2

查看答案和解析>>

同步练习册答案