精英家教网 > 初中数学 > 题目详情

【题目】如图,直线y=kx与双曲线y=﹣交于A(x1,y1),B(x2,y2)两点,则2x1y2﹣8x2y1的值为(

A. ﹣6 B. ﹣12 C. 6 D. 12

【答案】B

【解析】

(解法一)将一次函数解析式代入反比例函数解析式中得出关于x的一元二次方程,解方程即可得出A、B点的横坐标,再结合一次函数的解析式即可求出点A、B的坐标,将其代入2x1y2-8x2y1中即可得出结论.
(解法二)根据正、反比例函数的对称性,找出x1=-x2、y1=-y2,将其代入2x1y2-8x2y1中利用反比例函数图象上点的坐标特征,即可求出结论.

(解法一)将y=kx代入到y=- 中得:
kx=-,即kx2=-2,
解得:x1=- ,x2=
∴y1=kx1=,y2=kx2=-
∴2x1y2-8x2y1=2×(-)×(-)-8××=-12.
(解法二)由正、反比例函数的对称性,可知:x1=-x2,y1=-y2
∴2x1y2-8x2y1=-2x1y1+8x1y1=6x1y1
∵x1y1=-2,
∴2x1y2-8x2y1=6x1y1=-12.
故选:B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知二次函数y=a(x-m)2-2a(x-m)(a,m为常数,且a≠0).

(1)求证:不论a与m为何值,该函数的图象与x轴总有两个公共点;

(2)设该函数的图象的顶点为C,与x轴交于A,B两点,当ABC是等腰直角三角形时,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某体院要了解篮球专业学生投篮的命中率,对学生进行定点投篮测试,规定每人投篮20次,测试结束后随机抽查了一部分学生投中的次数,并分为五类,:投中11次;投中12次;:投中13次;:投中14次;:投中15次根据调查结果绘制了下面尚不完整的统计图1、图2:

回答下列问题:

(1)本次抽查了 名学生,图2中的m=

(2)补全条形统计图,并指出中位数在哪一类

(3)求最高的命中率及命中最高的人数所占的百分比

(4)若体院规定篮球专业学生定点投篮命中率不低于65%记作合格,估计该院篮球专业210名学生中约有多少人不合格

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形网格中,小格的顶点叫做格点,连接任意两个格点的线段叫做格点线段。

(1)如图1,格点线段AB、CD,请添加一条格点线段EF,使它们构成轴对称图形;

(2)如图2,格点线段AB和格点C,在网格中找一格点D,使格点A、B、C、D四点构成中心对称图形;

(3)在(2)的条件下,如果每一小正方形边长为1,那么四边形ABCD的面积S为_________

(请直接填写)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB⊙O的直径,点F、C⊙O上且连接AC、AF,过点CCD⊥AFAF的延长线于点D.

(1)求证:CD⊙O的切线;

(2), CD=4,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,RtABC的三个顶点分别是A(﹣32),B04),C02).

1)将ABC以点C为旋转中心旋转180°,画出旋转后对应的A1B1C1,平移ABC,若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的A2B2C2

2)若将A1B1C1绕某一点旋转可以得到A2B2C2,请直接写出旋转中心的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示的网格图中,每小格都是边长为1的正方形,△ABC的三个顶点都在格点上,在建立直角坐标系后,点C的坐标(-1,2

(1)画出△ABC绕点D(0,5)逆时针旋转90°后的△A1B1C1,

(2)写出A1,C1的坐标.

(3)求点A旋转到A1所经过的路线长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知双曲线 (x>0)经过矩形OABC的边AB、BC上的点F、E,其中CE= CB,AF= AB,且四边形OEBF的面积为2,则k的值为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料,完成任务:

自相似图形

定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.

任务:

(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为   

(2)如图2,已知ABC中,ACB=90°,AC=4,BC=3,小明发现ABC也是“自相似图形”,他的思路是:过点C作CDAB于点D,则CD将ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则ACD与ABC的相似比为   

(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).

请从下列A、B两题中任选一条作答:我选择   题.

A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a=   (用含b的式子表示);

如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a=   (用含n,b的式子表示);

B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a=   (用含b的式子表示);

如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a=   (用含m,n,b的式子表示).

查看答案和解析>>

同步练习册答案